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Abstract

We introduce a novel technique for the construction of smooth stream surfaces of 4th order precision. While

common stream surface techniques use linear interpolation for generating seed points for new streamlines in the

refinement phase, we use Hermite interpolation. The derivatives needed for Hermite interpolation are obtained by

integration along the streamlines. This yields stream surfaces of 4th order precision. Additionally, we analyse the

accuracy of the well known Hultquist approach and our new algorithm and proof that Hultquist’s method is exact

for linear vector fields. We compare both methods using the well known distance based and a novel error based

refinement strategy. Our resulting surface is C1-continuous, enabling improved rendering among other benefits.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: flow visualisation, error

analysis, stream surface—

1. Introduction

The analysis of flow data often relies on flow visualisation.

The most common technique in this context are integral lines

and in particular stream lines. They are an intuitive and well

understood technique in flow visualisation. Stream lines are

tangent to the velocity vector of steady flow, meaning that

they represent the path of particles through the flow field.

Despite their illustrative and intuitive power, they can suffer

from visual complexity and clutter, mainly because of miss-

ing depth cues. Stream surfaces are the natural generalisa-

tion of stream lines as they represent a continuum of stream

lines started from a predefined curve. Thus, they are as intu-

itive as stream lines but possess the visual power of an actual

surface, enhancing depth perception greatly.

However, there is an asymmetry in existing stream surface

computation schemes. Namely, stream surfaces are com-

puted using fourth and higher order stream line integration

schemes in time, but for interpolation between stream lines

only linear interpolation is used. As an analysis will show,

linear interpolation is C0 continuous and the interpolation

error is only of order two. Therefore, we present a novel

algorithm which uses Hermite interpolation. Hermite inter-

polation has an interpolation error of order four and is C1-

continuous alleviating the mentioned asymmetry. More pre-

cisely, we compute bicubic patches forming the stream sur-

face. Thus, the resulting surface is smooth (C1-continuous)

and of fourth order precision.

2. Previous Work

An efficient algorithm for stream surface computation in vi-

sualisation was first described by Hultquist [Hul92]. In or-

der to seed stream lines, the start curve is discretised into a

finite number of points from which stream lines are started.

The surface is constructed by advancing a front of positions

approximating a line on the surface. The front is a polyline

consisting of linear segments connecting the ends of neigh-

bouring stream lines. Together with the stream lines, these

segments form ribbons which are advanced recursively by

considering the two diagonals in a quad, formed by the cur-

rent and the next point on the two integral lines of the ribbon.

The shorter of the two diagonals is chosen in order to avoid

thin, long triangles. Adjacent ribbons are advanced follow-

ing a recursive scheme. The integral lines are advanced one

fixed step at a time. The recursion stops once all integral

lines have reached their defined integration length.

To be able to deal with diverging flow, Hultquist used a

distance based refinement scheme. If the distance between

two integral lines exceeds a predefined threshold, a new in-

tegral line is started in the middle of the segment between

the current end points of adjacent integral lines. The current

ribbon is split into two. Moreover, if the angle between the

tangents of two neighbouring integral lines exceeds a given

threshold, this ribbon is not advanced any further and thus

terminated. The stream surface is split into two parts which
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Figure 1: Parameterisation of stream surfaces.

are advanced separately. This is to prevent exponential over-

head near critical points or obstacles.

This refinement scheme accounts for the stretching of the

stream surface in regions with flow divergence, but does

not perform very well in regions with intricate flow. In par-

ticular folding, twisting, or shearing of the surface yield

problems. Garth et al. [GTS∗04] presented an approach im-

proving on Hultquist’s work and showed how to obtain

surfaces with higher accuracy, especially in regions with

complex flow structures by using higher order integration

schemes combined with arc length parameterisation. Re-

cently, Garth et al. [GKT∗08] presented a scheme on com-

puting accurate path surfaces in large time-varying datasets

by separating integral surface approximation from genera-

tion of a graphical representation.

Scheuermann et al. [SBH∗01] presented a method for

stream surface construction that exploits the fact that, in a

tetrahedron, the stream surface is given in closed form as-

suming linear interpolation throughout the cell. Thus the

stream surface can be computed analytically on a per tetra-

hedron basis. While being elegant, obviously the resolution

of the resulting surface is tied very strictly to the resolution

of the underlying grid.

In contrast to the methods mentioned above which com-

pute stream surfaces explicitly, van Wijk [vW93] presented

an algorithm to compute stream surfaces implicitly by defin-

ing a scalar function on the boundary of the grid. In a sec-

ond step, the scalar values are advected from the boundary

through the flow domain. Then it is possible to construct

stream surfaces by means of standard isosurface extraction

algorithms. Unfortunately, van Wijk’s approach is not able to

extract all possible stream surfaces of a flow which prevents

it from being generally applicable.

A technique presented by Schafhitzel [STWE07], relies

on the integration of particles on the GPU, which are ren-

dered using a splatting method. Despite the fast surface inte-

gration, a problem arising from such an approach is that no

explicit mesh is produced. It would have to be reconstructed

from a set of points. Stream surfaces can also be used for a

topological segmentation of the vector field [MBS∗04] di-

viding it into regions of similar flow behaviour.

3. Stream Surfaces

This section introduces some theoretical aspects about

stream surfaces: Let v be a Lipschitz continuous vector field

defined over a domain Ω ⊂ R
3, then a stream line or inte-

gral line φ(t; t0,x0) is a solution to the ordinary differential

equation:

d

dt
φ(t; t0,x0) = v(φ(t; t0,x0)) φ(t0; t0,x0) = x0

From the definition we see that stream lines are tangent to

the vector field at every point of the stream line.

A stream surface ψ : [t0, tmax]× [0,1] 7→ R
3 can be de-

scribed as a 2D parametric surface embedded in a 3D flow.

A natural parameterisation is to use a parameter t ∈ [t0, tmax]
along every stream line parameterising the surface in time

and a parameter s ∈ [0,1] which parameterises the stream

lines according to their starting point positions along a space

curve c(s) in Ω:

ψ(t,s) = φ(t; t0,c(s)) ψ(t0,s) = c(s)

where curves of constant s are called stream lines whereas

curves of constant t are called time lines (see Fig. 1).

A stream surface approximation is constructed by seed-

ing stream lines from the space curve c which is given as a

polyline connecting a finite set of points. In our approach,

the exact stream lines φ are numerically approximated by

stream lines φ̂ using the DoPri5 [PD81] integration scheme.

Similar to [GKT∗08] time lines are approximated at equally

spaced time values tn = n ·∆t covering the interval [t0, tmax]
with n ∈ N. The user needs to specify the ∆t parameter to

determine the spacing. This is necessary to compute a well

defined bicubic patch bounded by time and stream lines. The

approximated stream surface is denoted by ψ̂.

4. C1-continuous Stream Surfaces

In the following, we present a novel method for the construc-

tion of a fourth order C1-continuous stream surface, mean-

ing that the interpolation error of the surface is of order four.

This is achieved by using Hermite interpolation in t and in

s-direction, generating bicubic patches.

4.1. Hermite Interpolation

The cubic Hermite interpolation on the interval [si,si+1] with

r = s−si

si+1−si
for a fixed time t is defined as follows:

H(r) = H0(r)ψ(t,si)+H1(r)ψ(t,si+1)

+ (si+1 − si)

(

H2(r)
d

ds
ψ(t,si)+H3(r)

d

ds
ψ(t,si+1)

)
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Figure 2: Hermite interpolation.

with the following Hermite polynomials

H0(r) = 2r
3 −3r

2 +1

H1(r) = −2r
3 +3r

2

H2(r) = r
3 −2r

2 + r

H3(r) = r
3 − r

2

Figure 2 shows a schematic drawing of the Hermite inter-

polation between two points ψ(t,si) and ψ(t,si+1) along a

time line (constant t) on the stream surface. The points are

located on two neighbouring streamlines.

4.2. Approximation of the Covariant Derivative

As we have seen in the previous section, Hermite interpo-

lation along stream and time lines requires the covariant

derivatives with respect to t and s. Therefore, we describe the

calculation of these derivatives in the following: The deriva-

tive with respect to t can be obtained by evaluating the vector

field at the desired positions, e.g. on the stream line. Thus,

Hermite interpolation along stream lines is always possible.

More effort needs to be spent in order to obtain the covariant

derivatives with respect to s. The general idea is to define

the derivatives on the well known seed curve and then inte-

grate them along every stream line with the same numerical

scheme that is used for stream line integration. We will refer

to this process in the following as derivative integration.

First, for derivative integration any numerical integration

scheme based on a Runge-Kutta formula, represented by Θ,

can serve as a basis:

yn+1 = yn +hnΘ(tn,hn,yn) (1)

where yn denotes φ̂(tn; t0,x0) to avoid notational clutter.

We use formula (1) to obtain a numerical scheme integrating

the derivative by differentiating it with respect to s, yielding

d

ds
yn+1 =

d

ds
yn +hn

d

ds
Θ(xn,hn,yn). (2)

Since the above description is very abstract, we give a

practical example in the following, where Θ represents a

two-stage Runge-Kutta method:

k1 = v(tn, yn)

k2 = v

(

tn +
2

3
h, yn +h

2

3
k1

)

yn+1 = yn +
1

4
h(k1 +3k2)

Θ(tn,hn,yn) =
1

4
(k1 +3k2) .

As mentioned, differentiating this formula with d
ds yields

equation (2). By propagating the differential further into the

Runge-Kutta formula and applying the chain rule, we obtain:

d

ds
k1 = ∇v(tn, yn)

d

ds
yn

d

ds
k2 = ∇v

(

tn +
2

3
h, yn +h

2

3
k1

)(

d

ds
yn +h

2

3

d

ds
k1

)

d

ds
yn+1 =

d

ds
yn +h

1

4

(

d

ds
k1 +3

d

ds
k2

)

where ∇ denotes the gradient operator. ∇v is the matrix

of the partial derivatives, also known as Jacobian matrix. A

more detailed example of a three stage Runge-Kutta method

can be found in the supplemental material on the conference

DVD. By comparing the original Runge-Kutta formulas with

the ones we obtained for the covariant derivative we find that

the Jacobian must be evaluated at exactly the same positions

as the Runge-Kutta scheme. This means that the two meth-

ods are firmly tied together.

4.3. Coarsening and Refinement

In order to refine or coarsen a stream surface, stream lines

need to be inserted or terminated. For a C0-continuous

stream surface, this process has been described in the work

of Hultquist [Hul92]. In the case of a C1-continuous stream

surface, the algorithm needs some modification. For refine-

ment, the algorithm remains basically the same. If the ne-

cessity of refinement is detected by the refinement scheme,

a new stream line is inserted at an interpolated position using

Hermite interpolation (see Fig. 2). Therefore, the transition

of the derivative at constant s from time tn−1 to tn is contin-

uous and the surface remains C1-continous.

The case of coarsening is a bit more complicated because

the end point of the terminated stream line does not lie on the

Hermite interpolation curve if only the left and right neigh-

bouring stream line is considered. Thus, the order of preci-

sion drops locally since an interpolation point is removed

from the front. Globally the front curve is still of fourth

order. This is not a special problem of the algoithm but a

general phenomenon of Hultquist like algorithms caused by

coarsening. However, to maintain C1 continuity the deriva-

tive must be linearly interpolated from the integration end-

point of the terminated stream line at time tn−1 to the corre-

sponding point on the Hermite interpolation curve at time tn.
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(a) Linear (b) Hermite

Figure 3: Interpolation Schemes.

4.4. Error Analysis

Stream surface generation algorithms, among them

Hultquist’s method, so far are assuming linear interpolation

between integral curves, whereas our method uses Hermite

interpolation. In the following, we analyse the local interpo-

lation error of linear and Hermite interpolation between two

time lines to obtain the order of accuracy in s-direction. As

a result, we show that linear interpolation is exact for linear

vector fields and Hermite interpolation for cubic vector

fields.

4.4.1. Analysis of Hultquist’s Method

The linear interpolation error can be expressed as the dif-

ference between the correct solution ψ(tn,s) and the linear

interpolated solution Lψ(tn,s):

εL(tn,s) = ψ(tn,s)−Lψ(tn,s) (3)

Let si < s < si+1, then equation (3) can be expressed as fol-

lows:

εL(tn,s) =ψ(tn,s)−
si+1 − s

si+1 − si
ψ(tn,si)−

s− si

si+1 − si
ψ(tn,si+1)

(4)

In order to analyse the linear local interpolation error as it is

transported from one time line ψ(tn−1,s) to the next ψ(tn,s),
we need to reformulate equation (4), which is written in

terms of time tn, with terms of time tn−1. Therefore, we ap-

ply Taylor expansion in time around tn−1 to all terms and

additionally in space to the terms belonging to linear interpo-

lation. By doing so we rephrase equation (4) in terms of time

tn−1. Since we are analysing the local error, a precondition is

that the local error at time tn−1 is zero, i.e. εL(tn−1) = 0 (see

Fig. 3(a)). Comparing the terms of the Taylor expansions we

find that the linear approximation error of the surface in s-

direction is of order O(∆s2), meaning that Hultquist’s algo-

rithm interpolates correctly in linear vector fields. A more

detailed derivation can be found in the supplemental mate-

rial.

4.4.2. Analysis of Our New Algorithm

In order to analyse the local interpolation error of our new al-

gorithm, again first the correct solution ψ(tn,s) is compared,

in this case, to Hermite interpolation Hψ(tn,s):

εH(tn,s) = ψ(tn,s)−Hψ(tn,s)

which, explicitly written, yields

εH(tn,s) = ψ(tn,s)−H0(r)ψ(tn,si)−H1(r)ψ(tn,si+1)

−(si+1 − si)

(

H2(r)
d

ds
ψ(tn,si)+H3(r)

d

ds
ψ(tn,si+1)

)

Again, the local error εH at time tn−1 is zero. Now the term

ψ(tn,s) is expanded in t around tn−1 up to fourth order. The

remaining terms are first expanded in time around tn−1 and

then in space around s (see Fig. 3(b) ), both up to fourth

order. The resulting terms of up to third order vanish, mean-

ing that the cubic Hermite approximation error is of order

O(∆s4). Thus, this type of interpolation is exact for cubic

vector fields. A more detailed derivation can be found in the

supplemental material.

Figure 4: Refinement of stream surface near a linear saddle

point using distance based refinement.

5. Refinement Strategies

In order to obtain a good approximation, an acceptable sam-

pling density of the front must be maintained. Therefore,

stream surface construction algorithms provide adaptivity

towards refinement and coarsening. In the following sec-

tions, we analyse the distance based and a novel error based

refinement scheme which allows to prescribe a local error

bound that is maintained through stream surface construc-

tion. We describe the algorithms for inserting and removing

stream lines, i.e. points on the front, for each scheme.

5.1. Distance Based Strategies

Distance based refinement strategies split a ribbon and seed

a new integral curve if the distance at time tn between two

neighbouring stream lines, with parameter values si and si+1,

exceeds a given threshold. Thus, the front is refined when

it is stretched in s-direction, which is the case in the pres-

ence of diverging flow. The seeded stream line is inserted

at time tn at parameter value s = 1
2 (si + si+1). The position

is interpolated using either linear interpolation, which is the

classical method, or by using Hermite interpolation which is

proposed in this work.

c© 2011 The Author(s)
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(a) Delta Wing (b) Cuboid

Figure 5: Overview of computed stream surfaces for the numerical experiments

In order to coarsen the stream surface, three neighbour-

ing stream lines, i.e. three neighbouring points on the front,

are considered. If the sum of the distance between any two

of them falls below a second prescribed distance threshold,

the stream line in the middle is removed. The threshold for

coarsening should of course be lower than the threshold for

refinement.

Despite their popularity and robustness, distance based re-

finement strategies have some shortcomings. The approx-

imation error of the front is measured only in an indirect

way by means of a geometric property of the surface (dis-

tance between stream lines). Thus, the surface might be re-

fined in regions where the approximation error is low, e.g. in

the presence of a linear saddle point (see Fig. 4) where the

distance based refinement causes exponential overhead. On

the contrary, it cannot account for e.g. folding or twisting,

which leads to undersampling in such areas. However, we

seek to resolve this issue by introducing error based refine-

ment strategies in the next section.

5.2. Error Based Strategies

Error based refinement strategies split a ribbon when the lo-

cal interpolation error exceeds a given bound. This error is

estimated directly by seeding a new short stream line from

a position interpolated between neighbouring stream lines at

time tn−1 integrating it to time tn. The estimated error is the

difference between the interpolation of the position at time tn
and the integration endpoint of the inserted stream line (see

Fig. 3(a) and 3(b)):

ε(tn,s) = φ̂(tn; tn−1, F̂(tn−1,s))− F̂(tn,s)

where F̂ is a piecewise interpolant, interpolating between

two neighbouring stream lines. This means that the front

is only refined in regions where the underlying flow is of

higher order than the piecewise interpolant. For example, er-

ror based strategies with linear interpolation do not refine

the front in a linear vector field, since linear interpolation is

exact for linear vector fields (see Sec. 4.4.1).

For coarsening, again three neighbouring stream lines, i.e.

three neighbouring points on the front, are considered. If the

local interpolation error for two abutting segments on the

front falls below a second prescribed error bound the stream

line connecting both segments is removed forming one seg-

ment.

However, error based strategies of this type basically dou-

ble the cost for stream surface computation. For every ribbon

a short streamline from time tn−1 to time tn needs to be cal-

culated for every time step tn. In return, they allow to specify

an error bound for the local error of the surface. Thus, error

based strategies refine the surface only when it is necessary,

i.e. where the error bound is exceeded.

6. Results

In this section, we describe the datasets we have used for

conducting our numerical experiments, discuss the perfor-

mance of the different refinement schemes and present the

improved rendering that has become possible by Hermite in-

terpolation along time lines.

6.1. Datasets

To compare the different stream surface techniques we ap-

plied them to the following application datasets.

Delta Wing This dataset is a study of an unsteady vortex

breakdown above a delta wing given on an unstructured grid.

The angle of attack increases during the simulation. The grid

consists of around 3 million vertices and 11 million cells. We

have chosen time step 65 out of a total of 86 time steps to run

our numerical experiment. The vortex breakdown bubbles

are fully developed at this time. We started integration in

front of the delta wing where the surface is drawn into one of

c© 2011 The Author(s)
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Figure 6: Numerical comparison of accuracy and field evaluations.
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Figure 7: The diagrams show the resolution of the last time line for a given precision.

the main vortices and curls up against the breakdown bubble

later on (see Fig. 5(a)).

Cuboid The Cuboid dataset stems from an unsteady numer-

ical simulation of fluid flow around a cuboid. The simulation

was carried out with the NaSt3DGP† flow solver. The data is

given on a rectilinear 100×100×100 grid. We computed a

stream surface starting near one of the corners of the cuboid

for our numerical experiments (see Fig. 5(b)).

6.2. Results of the numerical experiments

In this section, we present the results of numerical experi-

ments with the datasets introduced in the previous section.

The refinement schemes are compared on the basis of the

number of function evaluations of the underlying vector field

† NaSt3DGP was developed by the research group in the Division

of Scientific Computing and Numerical Simulation at the University

of Bonn. It is essentially based on the code described in a book by

Griebel et al. [GDN98].

as this is the computationally most expensive operation in

the stream surface integration algorithm.

In order to evaluate our new algorithm and the differ-

ent refinement schemes, we conducted a number of numer-

cial experiments with different datasets. For each dataset we

chose a start curve c(s) and a time interval [t0, tN ] for which

the stream surfaces are computed. First, a highly resolved

stream surface, representing the ground truth, is computed.

For the ground truth surface a large number of M stream

lines, equidistantly seeded on c(s), are integrated. We com-

pare the last time line ψ̂(s, tN) of each computed stream

surface with the last time line of the ground truth surface

ψ̂GT (s, tN) using the following error measure:

e(tN) =
1

M

M

∑
k=1

‖ψ̂(sk, tN)− ψ̂GT (sk, tN)‖
2

Despite the graph for each refinement scheme being dis-

played in one diagram for each dataset, distance and error

based methods should not be compared directly, since their

refinement behaviour is fundamentally different. The issue

preventing direct comparison is that for distance based meth-

c© 2011 The Author(s)
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Figure 8: The diagram shows the number of starting stream

lines versus the number of field evaluations for a constant

local error bound of 0.00002.

ods the start curve c(s) (see Sec. 3) needs to be refined

to a certain level according to the distance threshold (see

Sec. 5.1). Otherwise, refinement will occur in the first steps

until the distance between points on the front falls below this

threshold. Thus, the initial start curve discretisation depends

on the distance threshold.

In contrast, error based methods do not exhibit this be-

haviour. The initial discretisation of the start curve can be

chosen freely because refinement occurs on the basis of the

local interpolation error. On the other hand, the initial start

curve discretisation, i.e. the number of starting stream lines,

is a crucial parameter because the dependency between the

number of starting stream lines and the computational effort

to compute the stream surface is non-monotonic. There ex-

ists a start curve discretisation, for a fixed error bound, for

which the computational effort is minimal (see Fig. 8). This

is, because the starting stream lines are the most accurate

ones, meaning the more starting stream lines are used, the

more accurate the resulting surface will be. This applies to

distance based schemes as well. On the other hand, the more

starting stream lines there are, the less refinement is needed.

Thus, the issue whether the error based scheme is more ef-

ficient than the distance based scheme is a question of find-

ing the optimal start curve discretisation, which is yet an un-

solved task and part of future work. Therefore, the number

of starting stream lines for the error based methods has been

arbitrarily chosen to be eight to underline the incomparabil-

ity.

From Figures 6(a), 6(b) and 9 it can be seen that refine-

ment schemes using Hermite interpolation are always signif-

icantly more accurate for a given computational effort. Both

refinement schemes benefit from the more accurate interpo-

lation.

Despite the non-smooth surface of the delta wing and the

Cuboid with their sharp edges and pointy corners, resulting

in a very volatile Jacobian, the algorithms using Hermite in-

terpolation perform quite well. The delta wing dataset poses

an additional hurdle, because it is given on an unstructured

grid, where the Jacobian is discontinuous at cell boundaries

of a tetrahedron.

One confinement of the algorithm is, that the ∆t-

parameter must be chosen small enough such that refinement

can occur frequently enough, which applies to both, distance

and error based methods. This problem has been addressed

by Garth et al. [GKT∗08] by examining the number of inte-

gration steps the numerical scheme takes.

A disadvantage of the error based scheme, as presented

in section 5.2, is the usually higher computational effort in

comparison to distance based methods if a non-optimal start

curve discretisation is used (see Fig. 8). On the contrary, Fig-

ure 7(b) and 7(a) show that for a fixed precision and type

of interpolation, error based methods mostly insert fewer

stream lines, i.e. the resolution of the last time line ψ̂(s, tN)
is lower, than distance based methods. This is especially ap-

parent for the delta wing dataset where the stream surface

undergoes a large amount of twisting (see Fig. 6(b)).

However, the value of error based methods as such, is not

solely a matter of computation time (see Fig. 6 and 7). They

rather allow to specify a local error bound in s-direction,

which is maintained through the stream surface computa-

tion. Moreover, since the local error is guiding refinement,

a sparse initial discretisation of the start curve has little in-

fluence on the final discretisation of the front. However, it

does have an influence on the accuracy, i.e. the average error.

Namely, the finer the initial discretisation, the more accurate

the surface will be.

6.3. Improved rendering

Naturally, we employ Hermite interpolation not only for

inserting new streamlines in the refinement process but

also when rendering the surfaces. The derivatives computed

along the streamlines allow us to get a smooth approxima-

tion of the stream lines and time lines on the surface by

means of the Hermite interpolation. Both smooth curves

build up a bicubic patch providing the information we need

to produce renderings superior to those possible with the

standard approach (see e.g. Fig. 10).

Additionally, the smoothness of the surface allows to

compute continuously varying normals over the whole sur-

face. This is important for advanced shading, e.g. ray tracing,

if high quality images are needed.

7. Conclusion

We have presented a new algorithm for constructing stream

surfaces of fourth order precision in every direction by com-

puting bicubic patches producing a smooth C1-continuous

surface. The smooth surface allows for a much better ren-

dering improving the visual quality of the surface. Further-

more, the smoothness enables methods requiring continuous
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Figure 9: Comparison of accuracy of stream surfaces in car

dataset constructed using 10 stream lines. The left image

shows the surface for the Hultquist like method, the right im-

age shows the surface constructed using the new Hermite in-

terpolation based technique. The green lines represent time

lines of the approximated surfaces. The red line is a time line

from a high quality surface representing the ground truth for

comparison. The comparison shows the greatly improved ac-

curacy of the new method.

derivatives on the surface. FTLE fields [GWT∗08] on stream

surfaces indicating converging or diverging behaviour are

only one idea in this direction. Finally, we have presented

an error based refinement scheme which represents a first

step towards an error controlled stream surface construction.

Although we have shown the usefulness and feasibility

of computing stream surfaces using Hermite interpolation,

there is much room for further work on the topic. First, we

plan to increase the performance of the error based refine-

ment scheme. Second, we want to extend the error based

refinement scheme to work on the basis of one global error

bound for the whole surface.
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