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Abstract
Visual motor feedback can support users doing exercises for fitness or rehabilitation. One of the most prevalent visual cues

for motor feedback are superimposed human avatars. This work presents novel methods and valuable guidelines for

optimizing the display of motor feedback using superimposed avatars. As a foundation, we explain how superimposed

human skeleton-like avatars have to be registered according to the performed exercise. This not only helps to raise the

quality of technology-supported feedback but also improves the general understanding of feedback provided by super-

imposed avatars. These foundational guidelines can be used as a base for implementation or further research. Given two

registered avatars, we propose a novel method for real-time viewpoint selection. This method uses principal component

analysis (PCA) to calculate viewpoints considering feedback (here superimposed avatars). The resulting camera movement

is continuous, smooth, and faster than methods found in literature. This allows for real-time use or the viewpoint selection

for superimposed avatars in exercise videos. A user study with 39 participants was conducted, verifying our basic

assumptions and showing that our algorithm was preferred over the methods found in the literature. Together, the

registration and view selection methods provide a powerful resource for optimizing the display of superimposed avatars.

Furthermore, each of these methods can be used individually, providing additional value.

Keywords Motor feedback � Optimized display � Viewpoint selection � Avatar registration

Introduction

In modern society, skill training is crucial across various

areas, including recreational sports, physical therapy, and

professional environments. Enhancing the learning process

through interactive technology is becoming increasingly

important. Specifically, in motor skill training supported by

mixed reality technologies, interactive visual corrective

feedback has become particularly significant, as

demonstrated in our previous work [1]. This feedback is

designed to support individuals in performing specific body

movements correctly, thereby reducing the need for con-

stant supervision by professionals. Superimposed avatars,

in various types, represent a particular prevalent feedback

method. Proper execution of movements is vital in phys-

iotherapy and physical exercise to achieve the desired

benefits and prevent injuries. Additionally, the repetitive

and controlled nature of movements in physiotherapy and

strength training allows for precise feedback provision and

the identification of common errors.

Despite their importance, current methods for viewpoint

selection in human motion and action feedback do not

adequately consider visual cues. Furthermore, many

existing techniques are computationally intensive and

unsuitable for real-time application. In contrast, this paper

and its shorter version [2] identify key factors for optimal

viewpoint selection for superimposed avatars used for

motor feedback and propose an algorithm for this purpose

using principal component analysis (PCA). In addition
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to [2], this work explores valuable aspects of avatar reg-

istration. Not only do these directly impact the viewpoint

selection, but they also give us a further understanding of

how to register superimposed avatars to facilitate an

understanding of the feedback from the user (as illustrated

in Fig. 1), independent of the rendering methods.

Related Work

To follow the structure of the methodology in

Sect. ‘‘Methodology’’, we subdivided the related work

section according to the twofold nature of the main con-

tributions of the paper at hand.

Registration

In the current literature, we find a plethora of both rigid and

non-rigid registration methods, as analyzed by Tam

et al. [3]. When registering an actual and target pose it is

essential to use rigid registration, as we want to preserve

potential deviations from the ideal form. These would be

diminished by a non-rigid registration method, as it would

deform the ideal avatar. Specifically for rigid registrations,

there are several automatic methods, as Yaniv [4] and

Bellekens et al. [5] stated.

In some cases, a simple registration based on a single

joint is completely sufficient. For example, for optimizing

posture guidance in VR, Hoang et al. [6] registered the

target avatar based on the position and rotation of the

pelvis. Instead, Anderson et al. [7] used only the pelvis’

position while maintaining the orientation of the recorded

target movement. Subsequently, the approach was evalu-

ated, and users performed two ballet and two abstract

movements with the proposed system. In contrast, Naour

et al. [8] registered the avatars based on the position and

rotation of the left foot. This way, the football-throwing

motions of a learner were superimposed with those of an

expert. Additionally, we find many approaches in the lit-

erature that register avatars but lack explanations for these

methods.

View Direction

As demonstrated by Bouwmans et al. [9], robust PCA has

numerous applications in the field of visual computing. For

instance, Skaro et al. [10] introduced a method to reduce

errors common in marker-based motion tracking.

The literature offers several methods for viewpoint

selection regarding polygonal objects as surveyed by

Bonaventura et al. [11]. However, regarding human actions

or movements, there seem to be fewer approaches. For

Fig. 1 Highlighting the

importance of registration:

When registered at the pelvis

(a), the squatting target avatar

(in green) seems to be floating.

Registering at the feet seems to

provide more intuitive

feedback, connected to the

environment

Table 1 Exercise examples with

corresponding joints for each of

the six degrees of freedom to

match for an optimized

registration as described in

Sect. ‘‘Optimal Avatar

Registration’’

Translation along Rotation around

Vertical axis Horizontal axes Vertical axis Horizontal axes

Exercise Up/Down Left/Right Forward/Back Yaw Pitch Roll

Squat Lowest joint Pelvis Pelvis Pelvis Fixed Fixed

Leg raise Lowest joint Pelvis Pelvis Pelvis Fixed Fixed

Push-ups Lowest joint Pelvis Pelvis Pelvis Fixed Fixed

Warrior II Lowest joint Pelvis Pelvis Pelvis Fixed Fixed

Plank Lowest joint Pelvis Pelvis Pelvis Fixed Fixed

Dips Hands Neck Neck Neck Fixed Fixed

Pull-up Hands Neck Neck Neck Fixed Fixed

Jump Pelvis Pelvis Pelvis Pelvis Fixed Fixed
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example, Rudoy et al. [12] developed a method to generate

a three-dimensional volume from several successive

frames to select the best physical camera for television

broadcasts and similar applications. Whereas Kiciroglu

et al. [13] proposed an algorithm predicting pose estima-

tion accuracy, facilitating drone navigation to the calcu-

lated view point. Shi et al. [14] introduced an algorithm to

determine the best viewpoint using Kinematics Signifi-

cance Based Saliency, which orients figures and objects to

show their most protruding features.

Wang et al. [15] utilized information theory and deep

reinforcement learning to select a single viewpoint for

action sequences. In parallel, Choi et al. [16] extracted key

frames from motion data to create a sequence of stick

figures representing the initial motion data.

Ishara et al. [17] calculated the optimal camera position

for robot navigation using a camera mounted on top of the

robot. Their approach involves calculating the so-called

Joint Mutual Occlusion (JMO), which considers the angle

a between two joints and the viewpoint, as shown in Fig. 2.
The angles anm between joints n and m are summed and

normalized, where n;m 2 N and n 6¼ m, with N repre-

senting the number of joints. This approach results in
N!

2ðN�2Þ! calculations of a [18] and could therefore be com-

putationally expensive.

Kwon et al. [19] proposed a method that results in a

weighted sum of three metrics: normalized limb length,

normalized area of a 2-D bounding box, and normalized

visible area of a 3-D bounding box. In addition, they also

presented an algorithm that avoids recalculating weights

for each frame by summing the three metrics without

weights. However, their algorithm, designed for static

poses, requires recalculation for each frame in videos.

Despite these methods automatically selecting camera

positions for human poses, they are insufficient for visual

feedback, as the skeleton can occlude the feedback, making

it difficult to perceive, as analyzed by Nundy et al. [20] and

discussed in Sect. ‘‘Introduction’’.

The approaches by Ishara et al. [17] and Kwon

et al. [19] were compared to our method in a subsequent

user study, as they were the only methods applicable to

human figures with feedback. For more details, see

Sect. ‘‘Viewpoint Selection Evaluation’’.

PCA is commonly used to reduce dimensionality in data

sets for machine learning [21]. The principal components

represent the main independent directions in which data

points spread. For spatial data, three independent directions

are involved. The first two principal components represent

the main spread directions, while the third component

provides a good viewing direction, perpendicular to the

first two. This is equivalent to reducing the dimensionality

from three to two, as the rendered image of 3D objects is

displayed in two dimensions. Assa et al. [22] used this

method to calculate camera paths. However, their use case

differs significantly, as they compute camera paths that

involve camera cuts, which we avoid due to the short

duration of exercise repetitions where cuts can be disori-

enting. Additionally, the work of Assa et al. is action-

based, while ours is feedback-based, requiring additional

measures to ensure feedback visibility. Lastly, their

approach is not real-time capable, being computationally

intensive and requiring the entire motion sequence for

computation.

Methodology

The main contribution of this paper is twofold: In section

Sect. ‘‘Viewpoint Selection’’ the viewpoint selection for

two superimposed avatars is explained, as can be found in

the shorter version of this paper [2]. In addition to that, the

registration, which directly impacts the viewpoint selec-

tion, is elaborated on in Sect. ‘‘Registration’’.

Registration

The registration of two exercises represents in most cases

the foundation of visual feedback for motor skill training,

in particular, superimposed avatars. When registering a

superimposed actual and target avatar for a given exercise,

we need to keep certain factors in mind to facilitate a better

understanding of the scene for the user. For instance, the

spatial relation of the avatars to the environment helps the

user with orientation. Likewise, corrections for typical

deviations have to be anticipated. In summary, a well-made

registration can lead to a far more intuitive understanding

of visual feedback.

The registration is directly linked to the other aspects of

our feedback optimization. Not only does the registration

directly influence the inputs of the PCA viewpoint calcu-

lation (i.e. Dn and v~Fn in Eq. 1 found in Sect. ‘‘Viewpoint

Fig. 2 Measure for the self-occlusion of the skeleton by Ishara

et al. [17]: Joint Mutual Occlusion. Originally published in [2]

SN Computer Science           (2025) 6:388 Page 3 of 15   388 

SN Computer Science



Calculation’’), but it is a necessary prerequisite. Further-

more, our PCA-based viewpoint method as explained in

Sect. ‘‘Viewpoint Calculation’’, is designed to work with

smaller deviations. Therefore, an appropriate registration

method is important.

Optimal Avatar Registration

An optimal avatar registration is highly dependent on the

specific exercise performed and even on the individual

interpreting the visual feedback. However, there are a few

key aspects that are crucial in helping users to comprehend

feedback using two superimposed avatars. In the following,

we present guidelines, that can be used to register avatars

for a certain scenario or to implement optimal avatar reg-

istration independently.

One single joint is oftentimes sufficient for registration.

Especially for use cases with a limited selection of exer-

cises, it can lead to satisfying results, as described in

Sect. ‘‘Registration’’. However, to avoid irritating users it

is important to connect the avatars with their spatial sur-

roundings. For this purpose, we consider the six degrees of

freedom (6DoF) for placing a rigid body in 3D space, as

depicted in Fig. 3. We limited the 6DoF to four different

categories, adequate to optimize registration:

• Vertical alignment (up/down)

• Horizontal alignment (left/right & forward/backward)

• Rotation about vertical axis (yaw)

• Rotation about horizontal axes (pitch & roll)

To provide the best avatar registrations, we match these 4

different degrees of freedom with the following charac-

teristics from the fixed avatar:

Vertical alignment: As mentioned above, it is crucial to

connect the target avatar to the environment. Otherwise,

the user might be irritated, as the avatars seem to defy the

rules of physics. Depending on the exercise, there are

different connections to the surroundings: When doing

exercises while standing like squats or lateral raises, the

feet rest safely on the ground, thus connecting us with the

environment. When hanging (e.g. pull-ups) or supporting

the weight with the arms (e.g. dips) the hands connect us to

the outer world. The user expects the target avatar to be

connected to the environment the same way. Consequently,

the connection to the environment represents a good

measure of aligning the avatars. That means when the user

is standing on the ground, the avatar squatting seems to do

the same (see Fig. 1). We can further improve the regis-

tration if the lowest point is matched for horizontal align-

ment. This way, when the user lifts a foot, the avatar still

stays on the ground. Especially concerning exercises on the

ground, this step leads to a better understanding of what to

do, even when standing in a neutral position.

Horizontal alignment: The torso represents a big and

important part of the body and also contains the center of

mass while standing. Therefore, a horizontal alignment of

both the actual and target avatars proved to be most intu-

itive based on the torso. Slightly better results can be

achieved when choosing the point closest to the limbs

connecting to the environment (i.e. the pelvis for standing

exercises, a point between the shoulders for hanging, etc.).

Rotation around vertical axis: The rotation around the

vertical axis plays an important part in registering two

avatars. In most cases, this rotation represents the orien-

tation within the environment, which is arbitrary except

when working with stationary equipment. This means the

rotation around the vertical axis can be freely adapted

without compromising the correct execution of an exercise.

As mentioned in Sect. ‘‘Registration’’, there are a few

joints with which the registration can seem intuitive, the

joints in the torso emerge as the best option. In particular,

using the same joint that we chose for the horizontal

alignment delivers good results when also used as a ref-

erence for vertical rotation.

Rotation around horizontal axes: During exercise

performance, the rotation around the horizontal axes (i.e.

pitching and rolling) is highly dependent on the exercise.

Altering these rotations can lead to false interpretations of

the feedback. Therefore, we see these rotations as exercise-

inherent measures, which should not be altered (or only

with great care). Consequently, the pitching and rolling

rotations might best be carried over from the exercise

recording or reference movement. Otherwise, the avatars

seem too adaptive, possibly leading to wrong movement

execution.

Fig. 3 Six degrees of freedom to define the placement of a rigid body

in space
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Scaling

When two avatars are superimposed, depending on the

recorded individuals, the scale of the limbs is not neces-

sarily the same. Scaling one avatar according to the total

size of the other avatar only partially solves the problem.

As the proportions (e.g. torso length compared to leg

length) can differ between individuals, a uniform scaling

can still result in inconsistencies. Therefore, if the recorded

exercises compared potentially stem from different indi-

viduals, it is advisable to scale the target avatar bone-wise

to match the actual live avatar. Here, it is important to

ensure that the angles between the bones, i.e. at the joints,

stay consistent. Otherwise, the scaling will falsify the

exercise.

Registration Limitations

Avatar registration is a complex subject. The most gener-

ally applicable guidelines can be found above. However, it

seems as if there is no optimal approach for every indi-

vidual, situation, and use case. Especially when consider-

ing the details concerning the rotation around the

horizontal axes, it seems in some cases there is a trade-off

between the exercise’s validity and perfect registration.

Furthermore, scaling the target avatar eliminates most

inconsistencies in a bone-wise fashion, yet the angles

between the bones at the joints stay consistent. Conse-

quently, given certain proportions and thus centers of mass

of two individuals compared, the scaling could lead to the

target exercise not being the most optimal. Although the

methods mentioned above yield good results for most

exercises, even when registering with a neutral standing

position, hanging exercises are hard to perceive while

standing. This results from missing reference points of the

environment. Once the actual avatar is hanging, we can use

the hands as reference points (in particular, horizontal

alignment).

Examples

To establish an understanding of the methods explained in

Sect. ‘‘Optimal Avatar Registration’’, we chose a few

exercises with corresponding joints to match the six

degrees of freedom and will discuss them in this sec-

tion. The exercises can be seen in Fig. 4 and the joints used

for alignment can be taken from Table 1. The examples

were each chosen to be representative of a category of

exercises. They are not meant to be complete, but rather a

diverse collection, where finding examples close to many

use cases is possible. Regarding registration, the example

exercises could be sorted into 3 categories, as seen in

Table 1, based on how the individual connects with the

environment:

Connection to floor: Exercises that connect with the

feet on the floor (like squats and warrior II), and those that

involve lying down (like leg raises, plank, and push-ups)

both profit from the same registration. Here, the pelvis was

used to align the avatars on the horizontal plane. As a

result, the torsos and therefore, the body’s center were

registered quite well. The avatars were vertically placed by

aligning the lowest joint of each. Consequently, the avatars

were intuitively placed on the floor, even if the movement

of the actual avatar did not (yet) follow the target avatar

(see Fig. 4 and Fig. 1). Concerning rotation, the pitch and

roll rotations, as depicted in Fig. 3, were fixated as in the

recorded exercise. As already stated in Sect. ‘‘Optimal

Avatar Registration’’, the pitch and roll rotations seem

inherent to the exercise, as altering them can falsify the

execution. However, the yaw rotation was based on the

same joint used for horizontal alignment: The pelvis. This

aligns the main orientations of the avatars.

Connection to equipment: Alternatively, during an

exercise, the individual could connect with the environ-

ment on a piece of equipment. For example, this is the case

when doing dips or pull-ups where the individual is either

supported or suspended by the arms, as seen in Fig. 4. As a

joint for both, horizontal alignment as well as yaw align-

ment, the base of the neck (i.e. center between shoulders)

Fig. 4 Start and execution position of exercise examples registered according to the registration methods in Sect. ‘‘Optimal Avatar Registration’’

(R), the feet (F) and only the pelvis (P). The exercises and registration parameters can be found in Table 1
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was chosen. Here, this provides a more intuitive registra-

tion point than the pelvis, as the arms connect to the

environment. For the same reason, the hands were chosen

as the base for a vertical alignment. Since the bars for dips

or pull-ups represent the connection to the environment,

registration at the hands appears stable and intuitive.

No connection to the environment: Lastly, some

exercises require no connection to the environment (like

jumping or swimming). Still, it is possible to register

avatars in these cases. To do so, the pelvis is chosen as the

center of the body, as seen in Fig. 4. The pitch and roll

rotations are again fixated on the target avatar from how the

exercise was recorded. The remaining alignments (i.e.

up/down, left/right, forward/backward, yaw) are all done

according to the pelvis.

Viewpoint Selection

To facilitate a user-friendly and intuitive viewpoint selec-

tion, several things have to be considered. We will discuss

these in detail in Sect. ‘‘Perspective Considerations’’. With

the foundational registration methods discussed in

Sect. ‘‘Optimal Avatar Registration’’, it is possible to cal-

culate an optimized viewpoint, as presented in

Sect. Viewpoint Calculation’’.

Perspective Considerations

In the literature, concrete rules for generating good per-

spectives are lacking. However, based on user preferences

and logical argumentation, several criteria and hints can be

extracted to determine what facilitates a good viewpoint.

Polonsky et al. [23] identified seven measurable view

descriptors but concluded that determining a universally

good view of an object is challenging. None of the view

descriptors alone provides a general measure of viewpoint

quality. However, some clues are available for treating

specific objects. For instance, Zusne [24] empirically

demonstrated that humans prefer a frontal view of objects

with eyes and a face.

When looking at motor feedback, here in particular

superimposed avatars, the positions of the joints and the

angles between limbs are particularly critical for under-

standing movements. However, as previously analyzed by

Nundy et al. [20], angle perception is highly perspective-

dependent. This is especially true in computer-rendered

perspectives due to screen projection distortions, as shown

in FigS. 5 and 6. While stereoscopic viewing (e.g., real-

world or head-mounted displays) helps depth perception

and angle interpretation, monoscopic rendering does not

offer the same possibilities. Additionally, occlusion can

impede understanding of the human pose, with self-oc-

clusion of the avatar’s limbs behind each other. Similarly,

visual feedback cues can be obscured by the avatar itself or

by other cues, as depicted in Fig. 6 and 7.

Given the lack of a general description for a good view,

we need to define the characteristics of a good viewpoint

for our specific use case. In our context, we frequently use

the metaphor of a virtual camera, common in rendering, to

describe the viewpoint and viewing direction. Following

Zusne’s [24] findings, we prefer an approximately frontal

view of the human pose, meaning the virtual camera should

be oriented towards the front of the pose rather than from

behind. Additionally, the camera’s up-vector should align

with the world’s up-vector to avoid viewer confusion, as

this is the biologically typical perception for humans.

Furthermore, we aim to minimize the occlusions of the

avatars demonstrating the movement execution. Finally, in

our use case, visual feedback is provided to correct

movements or poses, and this feedback must be clearly

visible. Therefore, feedback should not be occluded by the

avatar or by itself and should be as perpendicular to the

view direction as possible.

Fig. 5 Highlighting the importance of viewpoint selection: Three different joint angles produce identical shadows when projected onto the

ground, implying they appear identical from an overhead perspective. Inspired by Nundy et al. [20]. Originally published in [2]
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When selecting perspectives for human motions and

corresponding feedback, it is important to consider the

dependencies of different body parts. Specifically, the

limbs are hierarchically linked, meaning that moving the

upper arm will cause the lower arm and hand to follow.

Consequently, perspectives for such motions should ideally

employ a hierarchical drill-down mechanism to prioritize

viewing along the hierarchy.

Viewpoint Calculation

As presented in Sect. ‘‘View Direction’’, the existing lit-

erature does not yet provide an optimal viewpoint calcu-

lation for human motions with visual feedback suitable for

skill learning. Most approaches are optimized for human

actions, leading to the potential invisibility of feedback

from an action-optimized viewpoint. In the following, we

guide you through our computationally inexpensive

method for calculating a viewpoint for human actions with

feedback. Equation 1 shows the calculation of our view

direction v~d:

v~d ¼ w � v~S þ
XN

n¼1

ðDn � d0Þ � v~Fn ð1Þ

Calculating v~d involves the following variables: w repre-

sents a weight to adjust the impact of the view between the

whole skeleton and the feedback; v~S is the viewpoint

optimized for all joint coordinates (i.e., the actual skele-

ton); N represents the number of joints that exceed a given

Fig. 6 Feedback for the same angle viewed from different perspec-

tives. Two feedback cues: circular sector (left) and arrow (right).

From left to right: Perfectly visible, visible, and hardly visible

feedback. The shadows demonstrate that viewpoint affects not only

the perception of the geometry but also of the feedback. Originally

published in [2]

Fig. 7 Skeleton of a human

pose with feedback from two

perspectives. Two visual

feedback cues are shown: A red

angle sector and a superimposed

avatar (here green skeleton).

The feedback is hardly visible

from the frontal perspective on

the left. Inspired by [2]

Fig. 8 If Joint Jn (in red) deviates from the target position, a PCA is

conducted including the corresponding target joint (in orange) and

their parents (in blue). The eigenvector e~3n then gives us an optimal

view direction v~Fn of the feedback for Jn. The resulting view direction

is orthogonal to the plane defined by the eigenvectors e~1n and e~2n.

This plane approximates the distribution of the considered joints and

does not interpolate them. Originally published in [2]
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deviation threshold d0; Dn is the deviation of a joint Jn from

the intended target position; the variable d0 is a constant

threshold of the deviation; and v~Fn is the view direction

optimized for the feedback corresponding to joint Jn, i.e.

the deviating of Jn and its corresponding joints, as seen in

Fig. 8. We do not consider rotations in the calculation,

because they also inevitably cause deviations in distance.

Some motion capture systems provide recorded spatial

data as three-dimensional joint coordinates (see

Sect. ‘‘Experimental Setup for Exercise Recording’’ for our

data acquisition method). When we conduct PCA over such

a point cloud of joint coordinates, the first two eigenvectors

e~1 S and e~2 S represent the two main spatial spread direc-

tions. The third eigenvector e~3 S ¼ v~S, perpendicular to the

first two, consequently providing a well-suited view

direction v~ for all joints, as explained in Sect. ‘‘Registra-

tion’’. In other words, the point cloud representing the

whole skeleton is most spread out along the horizontal and

vertical axes of the captured camera picture. Consequently,

the view direction v~S is optimal for comprehending motions

and poses. This method is also presented in Assa et al. [22].

Because the view direction should be optimized for

corrective feedback corresponding to the deviations of the

exercises, we must consider the deviating joints. For this

purpose, we locally apply the above-mentioned PCA

viewpoint calculation. The PCA is conducted with the

actual and target joint coordinates and the corresponding

parent joint coordinates as seen in Fig. 8 for joints

Jn; n 2 ½1::N�, with deviations Dn, that exceed the deviation

threshold d0. Consequently, the resulting eigenvector

e~3Fn ¼ v~Fn is a suitable view direction for displaying joint

Jn, its parent, the corresponding optimal joint position, and

its parent. This is illustrated in Fig. 8, where the considered

joint Jn is shown in red, the optimal joint position in

orange, and the corresponding parent joints are depicted in

blue.

In Eq. 1, the factor Dn (minus the threshold d0) of v~Fn

increases the influence of joints depending on their devia-

tion. This automatically considers a hierarchical drill-down

mechanism (see Sect. ‘‘Perspective Considerations’’), since

lower hierarchy joints (farther from the body center) usu-

ally have a higher absolute deviation, as they are impacted

by the deviations of the higher hierarchy joints (closer to

the body center), adhering to the intercept theorem. The

subtraction of the threshold d0 ensures continuous camera

movement, so that the impact of deviating joints continu-

ously increases or sets in from zero. The sum of all v~Fn

represents a feedback-optimized view direction for all

joints exceeding the deviation threshold. This could be seen

as the calculation of the mean of all v~Fn without the divi-

sion. The division is unnecessary, as the length of the view

direction vector is irrelevant.

The view direction optimized for the skeleton v~S is

weighted with the constant w to adjust optimization

between the skeleton and feedback. Values of d0 ¼ 50 and

w ¼ 3d0 ¼ 150 showed the best empirical outcomes for

our use case. This holds several implications:

• The eigenvectors resulting from the PCA, and therefore

the view direction vectors, are normalized, i.e. they

have a length of 1. In the virtual 3D space, we applied a

scale of 1 unit ¼ 1 mm. Consequently, the deviation

threshold d0 corresponds to 50 mm.

• To have the same impact as the skeleton-optimized

view direction v~S, the feedback-optimized view direc-

tion v~Fn of a single joint would need to have a deviation

of 200 mm, consisting of a 50 mm minimal threshold

plus 150 mm of weight.

• The deviations of several joints together can exceed

150 mm (plus threshold) to have the same impact on

the resulting view direction as the skeleton as a whole.

• If multiple joints do not exceed the 50 mm minimal

threshold, the skeleton has 100% impact, thus the

viewpoint is optimized for just the skeleton.

• Because we consider the absolute deviation (instead of

relative to the parent), the deviations of lower hierarchy

joints and their parent joints are dependent. This results

in a hierarchical drill-down mechanism, as explained in

Sect. ‘‘Perspective Considerations’’, where the joints

closer to the body center have a higher impact on the

view direction.

To calculate the viewpoint for the virtual camera, we

subtract the normalized view direction v~d from the location

of the focus point, which will be centered in the rendered

frame (in our case, the joint representing the pelvis loca-

tion, since it is a good representation of the body’s center).

The distance to the focused point can be set by multiplying

a constant. The digital distance corresponding to 2 m

Fig. 9 Sample exercises with

deviations as described in

Sect. ‘‘Sample Exercises’’.

Originally published in [2]
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yielded the best results for us, as all exercises were in

frame at this distance. However, this highly depends on the

settings (e.g., focal length) of the virtual camera chosen.

If e~ is an eigenvector, c � e~ is also an eigenvector, for all

c 6¼ 0 [25]. Consequently, �v~d, the flipped eigenvector of

v~d, is also a viable view direction. Initially, we select the

direction resulting in a more frontal view of the avatar,

since this is the predominantly preferred view [24]. For

every subsequent frame, we select the direction (from v~d

and �v~d) with a smaller angular difference from the pre-

vious frame’s direction, ensuring smooth camera motion.

Although the third eigenvector of the PCA follows a

smooth path, the view direction (i.e. camera) tends to rotate

around the avatar, contradicting Zusne’s [24] findings that

a frontal view is commendable. To resolve this, we pro-

jected view angles from behind to the frontal plane,

bypassing the predominantly small number of frames that

feature a view from behind and showing a view from the

side. Consequently, the projection affects the camera view

only slightly and briefly.

Existing view selection approaches often focus on

solving an optimization problem, iterating over a limited

number of potential viewpoints, and choosing the one with

the best score. This can result in a high number of costly

iterations or erratic camera motion if the number of

potential viewpoints is too small. Additionally, the best-

scoring viewpoints in consecutive frames might be far from

each other, resulting in inconsistent camera movements.

Our method, however, provides continuous camera move-

ment, as none of the mathematical operations in Eq. 1

compromise consistency, and the PCA computations are

conducted for continuously moving point clouds.

Empirically, no cases were encountered where a null

vector arose from the calculations above. We also assessed

stability regarding the PCA, as it is mathematically possi-

ble, that the camera view flips if the second and third

eigenvectors have approximately the same length and

deviate just slightly. In our experiments, this never

occurred.

Viewpoint Selection Evaluation

To verify the viewpoint selection method described in

Sect. ‘‘Viewpoint Calculation’’, a user study was con-

ducted. The necessary preliminaries, the study design, and

the subsequent evaluation methods are found in the

following.

Participants

For the user study, 39 individuals were recruited from an

academic environment. These were predominantly com-

puter science students between the ages of 20 and 30. More

than half of the participants reported frequently exercising

and considering movement-related aspects, giving ratings

of four or higher on a five-point scale. This shows that the

participants were somewhat acquainted with similar exer-

cises and their execution. By comparison, a much smaller

number of physiotherapy clients were represented in the

study. More than half of the participants reported receiving

Fig. 10 View Selection Error (VSE) for different viewing angles from
the top (a–d) and side (e–h) using the benchmark of Dutagaci

et al. [30]. The red line represents the view direction selected by our

method. The human figure only shows spatial orientation and does not

represent the executed movements. Originally published in [2]

SN Computer Science           (2025) 6:388 Page 9 of 15   388 

SN Computer Science



physiotherapy with the lowest frequency. Color vision

deficiency did not affect our user study because the tasks

required participants to recognize shapes rather than colors,

as our focus was on perspective.

Experimental Setup for Exercise Recording

The poses and motions found in this work were recorded

using a Microsoft Azure Kinect 3D camera [26]. Its com-

puter vision capabilities can provide spatial coordinates of

several joints of the human body. Here, the term joint is

rather defined as biological landmarks than referring to the

medical definition [26].

The following conditions achieved optimal positioning

of the subject in our case: The camera was mounted at

about 140 cm with the help of a tripod. It was placed about

280 cm away from the subject. The height of the subject

was about 190 cm. This setup allowed for stable tracking

and captured all poses within the frame. According to our

use case, the joints of the eyes, ears, and nose were

discarded as we found that these were too imprecise and

irrelevant to our use case. This left us with 26 joints. For

further information on the visualization of avatars, see

Sect. ‘‘Exercise Visualization’’.

Subsequently, a diverse set of example exercises was

developed including various exercise and deviation com-

binations. We then superimposed each of these exercises to

the corresponding counterpart with deviation from the

correct form (see Sect. ‘‘Sample Exercises’’). The spatial

registration was unambiguous, as the majority of joints

were nearly identical and both executions were recorded

from the same individual. Consequently, many registration

methods would yield similar results. For further informa-

tion regarding registration, covering more complex cases,

see Sect. ‘‘Registration’’. The methods used to create an

overlay of two exercises matching temporally exceed the

scope of this paper. Throughout the literature we often see

Dynamic Time Warping fulfilling that role (e.g., [27, 28],

and [29]).

Fig. 11 Image sequence, taken from a video of a biceps curl exercise with deviation. The viewpoint is optimized by the Joint Mutual Occlusion
algorithm by Ishara et al. [17]. Originally published in [2]

Fig. 12 Image sequence, taken from a video of a biceps curl exercise with deviation. The viewpoint is optimized by the algorithm by Kwon

et al. [19]. Originally published in [2]

Fig. 13 Image sequence, taken from a video of a biceps curl exercise with deviation. The viewpoint is optimized by our algorithm. Originally

published in [2]
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Exercise Visualization

An abstract avatar was used to visualize the actual motion,

and for the target motion, a skeleton is displayed as seen in

Fig. 9. The visualization of the skeleton displayed in green

corresponds to the joints recorded by the 3D camera [26]

as mentioned in Sect. ‘‘Experimental Setup for Exercise

Recording’’. Two different avatar visualizations were used

to help users distinguish the actual movement from the

target movement. In addition, users with color vision

deficiency are supported, as the differences between the

avatars are distinguished by shape, not by color. The

abstract avatar occludes itself and its background to a

greater extent and visualizes fewer joint positions than the

skeleton, as the fingertips and thumbs are integrated into

the hand. Yet, for viewpoint optimization, all joints are

considered in the calculations. The visualizations in this

paper are simply used for demonstrative purposes and are

not the subject of our research. The focus of this work is

the viewpoint selection, where the form of visualization

plays a subordinate role.

Sample Exercises

To assess our method, as described in Sect. ‘‘User Study

Design’’, and compare it with those described in existing

literature, we selected four static poses to establish basic

assumptions (see Sect. ‘‘Perspective Considerations’’) and

six dynamic exercises, each with specific deviations from

the ideal form. The deviations were chosen to be common

mistakes for the considered exercises. We aimed to select a

wide variety of exercises and deviations to evaluate the

methods exhaustively. As a result, poses and exercises

were selected, so that different movement and feedback

directions are represented. For instance, during lateral rai-

ses, the arms are moved laterally away from the body,

whereas in a biceps curl, the arms move in front of the

body (see Fig. 9). We also included an exercise with dif-

ferent deviations (biceps curls A and B).

Selecting a viewpoint for videos can be considered as

choosing a continuous viewpoint for each static pose in the

individual frames. To verify the underlying assumptions of

viewpoint quality (see Sect. ‘‘Perspective Considera-

tions’’), we chose four representative static poses: standing

(standard anatomical position), squatting, bending down,

and bench press. To learn more about how the user study

was conducted, please refer to Sect. ‘‘User Study Design’’.

The following six exercises were chosen, including

deviations (see Fig. 9 for visualization of the exercises):

bench press (deviation: Arms too wide), lateral raises

(deviation: Arms asymmetrical), bend over row (deviation:

Elbows tucked in), shoulder press (deviation: Arms

asymmetrical), biceps curl A (deviation: Repetition only

half executed), and biceps curl B (deviation: Elbows do not

stay stable). The exercises and their deviations were

recorded at the same position, and performed by the same

individual. Therefore, it was possible to use the absolute

position as a registration method. However, the com-

mendable methods described in Sect. ‘‘Registration’’

would yield the same results, even when performed with

different-sized individuals at varying locations.

User Study Design

The user study was structured into three tasks. The par-

ticipants were presented with two tasks and a set of

structured questions. These are explained in the following.

Viewpoint Selection: We intended to confirm the

underlying assumptions of user preferences for the views as

explained in Sect. ‘‘Perspective Considerations’’. For this

purpose, we asked users to choose the viewpoint for static

poses. Feedback was not displayed during this task, as we

wanted to verify the established assumptions. As viewpoint

selection for videos selects a viewpoint for a static pose in

each frame, this should give us insights into user preference

and how our algorithm performs compared to that. Fur-

thermore, it is unfeasible for users to select a camera path

in real-time. Therefore, only with static poses, user eval-

uation is even possible. This also enables our method to be

compared to the current literature (see Sect. ‘‘View

Direction’’).

A skeleton-like avatar successively showed four static

poses of exercises: bench press, squat, bend over row, and

standing (for more information, see Sect. ‘‘Sample

Table 2 Results of user study. Distribution of viewpoint selection methods chosen by the participants. Originally published in [2]

Method Bench press Biceps curl A Lateral raises Shoulder press Bend over row Biceps curl B Total

Percentage

Neutral 19 15 3 15 6 18 32.48 %

JMO 1 1 6 0 25 2 14.96 %

Kwon 14 7 3 3 6 8 17.52 %

Ours 5 16 27 21 2 11 35.04 %
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Exercises’’). The users could adjust the viewing angle

pose-wise by clicking and dragging the mouse. A skybox

around the avatar supported orientation in virtual 3D. After

confirming, the viewpoint was registered and stored for

analysis.

Viewpoint Comparison: To evaluate the performance

of our view selection algorithm, we showed four looped

videos of exercise repetitions with the corresponding cor-

rection feedback randomly juxtaposed. The viewpoint in

each video was selected by a different method. This way,

six different exercises with deviations were successively

shown, as explained in Sect. ‘‘Sample Exercises’’.

The different methods used for viewpoint selection are:

• Ishara et al. [17], who chose the viewpoint according to

the JMO, the biggest sum of angles between all joints

and the potential viewpoint (see Fig. 2).

• The method of Kwon et al. [19] involves the sum of

displayed limb lengths, a 2D, and 3D bounding box. As

their best resulting method is computationally intensive

and not capable of real-time, we chose their second-best

algorithm variant without weights.

• Our algorithm, as described in Sect. ‘‘Viewpoint

Calculation’’.

• To compare the methods to a neutral position, we

included a viewpoint as it is used in isometric

projection (rotated 45� horizontally and 35:264�

vertically).

For more detail on the methods mentioned in this section,

see Sect. ‘‘View Direction’’.

Questionnaire: Finally, the third task asked participants

to provide more details about their prior experience with

the topic and to share their opinions. The first four ques-

tions were answered using a Likert scale, while the last two

were answered with free-text responses:

• How often do you exercise?

• How often are you involved in strength training?

• How often do you receive physiotherapy?

• How often do you consider movements?

• What options would you have liked to see?

• What stood out to you?

Viewpoint Benchmark

The viewpoints, chosen in the viewpoint selection task of

the user study, were evaluated using the benchmark pre-

sented by Dutagaci et al. [30]. They provided a method to

evaluate potential viewpoints and compare them to a

selection of views chosen by users. The calculation of what

Dutagaci et al. call the View Selection Error (VSE) can be

found in Eq. 2. The VSE represents a number between 0

and 1, where low values signify a high discrepancy

between the viewpoints in question and the ones chosen by

the users.

VSE ¼ 1

M � p � r
XM

m¼1

GDm ð2Þ

In Eq. 2, GDm represents the geodesic distance of the

potential viewpoint to each user-chosen viewpoint m 2 M.

The variable M represents the total number of participants

(i.e., the number of viewpoints to consider). The view-

points are expected to be on a sphere (viewpoint sphere)

around the focused object. The radius of said sphere (i.e.

the distance of each viewpoint to the focused object) is

represented by r. To visualize the user-selected viewpoints,

the viewpoint vectors were projected on the median and

transverse planes. Subsequently, we plotted the VSE by

comparing each direction around the center as a potential

viewpoint. As a result, the View Selection Error is dis-

played angle-wise in the median and frontal plane around

the body using the Viridis colormap [31] in Fig. 10. Here,

blue areas represent a low VSE and therefore, an overall

low distance to the user-selected view directions. In con-

trast, view directions that were avoided by the participants

are shown by yellow areas.

Results

In Sect. ‘‘Viewpoint Selection’’, we will discuss the per-

formance of each algorithm’s viewpoint selection relative

to the user-selected viewpoints, using the method described

in Sect. ‘‘Viewpoint Benchmark’’. Subsequently, in

Sect. ‘‘Method Analysis’’ the performance of the above-

mentioned methods in optimizing viewpoints for the same

exercise will be discussed, based on image sequences

extracted from the videos. Lastly, Sect. ’Viewpoint Com-

parison’’ concludes the user study results of the viewpoint

comparison. The results of the questionnaire are found in

Sect. User Study Design’’, where they specify the partici-

pants, and in Sect. 6, where the free-text answers are

discussed.

Viewpoint Selection

In Fig. 10, a low view selection error is represented by blue

areas. Therefore, viewpoints in these areas aligned well

with the user selection. Yellow areas were chosen less. The

red line represents the viewpoint chosen by our method for

the static pose without movement. Looking at Fig. 10, we

see that our method calculated viewpoints predominantly

lying in the blue regions, i.e., in regions preferred by users.

Similarly, it becomes apparent when analyzing the view

selection error mean over the four exercises, that, in
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comparison, our algorithm fits the selection of the users

best with an average VSE of 0.3467. The static isometric-

like view performed second best with an average VSE of

0.347 followed by JMO with 0.4825 and the method of

Kwon et al. with 0.5497.

Method Analysis

To interpret the comparison of methods in Sect. ‘‘View-

point Comparison’’, it is essential to understand the view-

points each method provides and how these viewpoints

change over time.

JMO [17]: The JMO algorithm predominantly pro-

duced an adequate overview of the human body. A major

drawback was that, when applied to videos, the algorithm

erratically switched between viewpoints that were signifi-

cantly distant from each other. This can be perceived in

Fig. 11. Consequently, the feedback often was difficult to

comprehend, as the algorithm was not designed to work

with visual cues or videos. Additionally, several viewpoints

were selected from below and behind, although participants

preferred perspectives from the front and slightly above

(see Sect. ‘‘Viewpoint Selection’’).

Kwon et al. [19]: As can be seen in Fig. 12, the algo-

rithm of Kwon et al. seemed to predominantly produce

views from behind in our application. As elaborated in

Sect. ‘‘Viewpoint Selection’’, this is a view that is mostly

avoided by users. Additionally, the algorithm sometimes

selected views from below, similar to the JMO algorithm

mentioned earlier. The algorithm by Kwon et al. offered a

much more stable perspective than JMO. However, the

feedback was often challenging to see.

Ours: Our algorithm consistently transitioned between

an optimal viewpoint for the neutral position and the

contracted position with deviations, as illustrated in

Fig. 13. When feedback was present, it was displayed

clearly and with perceivable emphasis on it. However, in

some exercises, the rapid exercise execution caused a

conflict between the neutral and the feedback-optimized

viewpoint. This resulted in quick camera movements,

which some users found irritating.

Viewpoint Comparison

Table 2 shows the user choice distribution of the viewpoint

comparison. Our algorithm was most prevalent with

35.04 % of votes, the isometric-like position was chosen

second most with 32.48 %, followed by Kwon et al. [19]

with 17.52 % and lastly JMO [17] with 14.96 %.

Occasionally camera positions from behind were pro-

vided by the methods of Kwon et al. [19] and Ishara

et al. [17]. Additionally, they produced an unsteady camera

movement, because they jumped between far-distant

viewpoints and generally had just a limited amount of

viewpoints available. In contrast, the static isometric-like

viewpoint produced surprisingly good results, although it

lacked an adaptation for movement or feedback. The pri-

mary advantage of the isometric-like viewpoint over the

other methods was its stability. Our method provided an

adequate view of the neutral positions of the exercises.

Furthermore, it produced a continuous camera movement

toward a feedback-oriented viewpoint with increasing

deviation. However, the camera movement showing the

bench press and bend-over row exercises was occasionally

rapid.

Insights and Discussion

Looking at Fig. 10, it becomes evident that the participants

preferred a frontal view direction. This aligns with the

statement made by Zusne [24], that humans desire frontal

views (see Sect. ‘‘Perspective Considerations’’), and veri-

fies these requirements for our application. Additionally, it

was observed that participants preferred a viewpoint from

slightly above.

Our algorithm performs significantly less well for some

specific exercises. This can be attributed to the consistently

smooth, though occasionally rapid, camera movement. In

particular, the camera moved rapidly during the bench

press and bend-over row exercises. As stated in

Sect. ‘‘Viewpoint Calculation’’, our algorithm generally

prevents inconsistent camera movement, though rapid

camera motions may still occasionally occur.

The most prevalent statement made by the participants

regarded the camera movement consistency. Specifically,

users were irritated by movements that were too rapid or

erratic. This observation matches the findings by Assa

et al. [22] concerning camera paths. Additionally, many

participants indicated that having multiple camera per-

spectives would help them to understand the poses and

feedback. This is especially interesting for future work and

when applying suggested methods. Additionally, some

users desired the option to select no method, as they felt

none of the suggested perspectives were adequate. This

implies that there are possible improvements to our algo-

rithm and that human viewpoint preferences might need

further assessment. Lastly, some users struggled to inter-

pret poses without relation to the environment. Primarily,

this concerned the bench press exercise, where a virtual

bench might help users interpret the avatar posture.

Therefore, incorporating the surrounding environment

could enhance understanding, especially for exercises

involving equipment such as weights, benches, and pull-up

bars. However, additionally rendered equipment could

occlude the avatar or visual cues and therefore hinder the
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perception of the provided feedback. In conclusion,

stable frontal views satisfied users the most. Regarding

viewpoint preference, we could not identify any difference

regarding gender or age.

The spatial registration (see Sect. ‘‘Registration’’) for

our use case was trivial, since the superimposed exercises

were recorded at the same position with the same indi-

vidual. Other circumstances, like varying individuals or

different registration methods, can yield fundamentally

different results in terms of feedback appearance. How-

ever, the view selection methods, as presented in

Sect. ‘‘Viewpoint Calculation’’, would still find a valid

viewpoint. Depending on what registration methods were

chosen, the view selection could be skewed toward the

feedback deviation. If there are other registration methods

chosen, it might be necessary to adapt the constants in the

viewpoint selection calculation (in particular, w and d0 in

Eq. 1) to retrieve the desired perspectives.

Conclusion

The paper at hand provides novel insights on how to

optimize the display of superimposed avatars. As we can

see in current literature, the superimposition of avatars

plays an increasingly important role. As an accessible and

intuitive method of providing and receiving motor feed-

back, it is widespread in both mixed reality and traditional

feedback technologies.

The consideration of avatar registration is

inevitable when attempting to optimize the display of

superimposed avatars. In the literature, avatars are often

registered by aligning the position and/or rotation of a

single joint. For specific use cases, this can be adequate.

However, to ensure that users can easily understand a wide

range of exercises, a more detailed approach must be taken.

We offer valuable insights on how certain exercises could

be optimally registered based on the performed exercise.

Without the claim for completeness, we offer fundamental

guidelines as the basis for application development or

further research. Furthermore, we provide concrete exam-

ples to help with comprehension and potential implemen-

tation. While we deliver a fundamental framework for

avatar registration, specific use cases have to be further

explored.

Avatar registration, important by itself, additionally

represents a major factor of influence on viewpoint selec-

tion, another essential topic for optimal display of super-

imposed avatars. We introduce a new method for selecting

viewpoints for motor feedback, such as superimposed

avatars, among other options. Not only is this method

computationally faster than the methods found in the lit-

erature, but evaluation in the context of a user study

showed that participants preferred our method over other

methods found in the literature. Nevertheless, there still is a

lot of potential for further research regarding viewpoint

selection, as our method seems better, but not optimal.

Our registration and viewpoint selection methods com-

bined can adequately optimize the display of superimposed

avatars. However, the individual methods provide value as

well, as they can be utilized separately from each other.
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31. Nuñez JR, Anderton CR, Renslow RS. Optimizing colormaps

with consideration for color vision deficiency to enable accurate

interpretation of scientific data. PLOS ONE. 2018;13(7):1–14.

https://doi.org/10.1371/journal.pone.0199239.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

SN Computer Science           (2025) 6:388 Page 15 of 15   388 

SN Computer Science

https://doi.org/10.1109/TVCG.2022.3227999
https://doi.org/10.1109/TVCG.2022.3227999
https://doi.org/10.5220/0012308700003660
https://doi.org/10.5220/0012308700003660
https://doi.org/10.1109/TVCG.2012.310
https://doi.org/10.1109/TVCG.2012.310
https://doi.org/10.1146/annurev-bioeng-070909-105249
https://doi.org/10.1146/annurev-bioeng-070909-105249
https://doi.org/10.1145/2971485.2971521
https://doi.org/10.1145/2971485.2971521
https://doi.org/10.1145/2501988.2502045
https://doi.org/10.3389/fict.2019.00016
https://doi.org/10.3389/fict.2019.00016
https://doi.org/10.1109/JPROC.2018.2853589
https://doi.org/10.1109/JPROC.2018.2853589
https://doi.org/10.1115/1.4049809
https://doi.org/10.1115/1.4049809
https://doi.org/10.3390/e20050370
https://doi.org/10.1007/s11263-011-0484-5
https://doi.org/10.1007/s11263-011-0484-5
https://doi.org/10.1109/CVPR42600.2020.00018
https://doi.org/10.1109/CVPR42600.2020.00018
https://doi.org/10.1007/s00371-018-1479-9
https://doi.org/10.1111/j.1467-8659.2012.03198.x
https://doi.org/10.1111/j.1467-8659.2012.03198.x
https://doi.org/10.1109/iccis.2015.7274609
https://doi.org/10.1109/iccis.2015.7274609
https://books.google.de/books?id=PDMGA-v5G54C
https://books.google.de/books?id=PDMGA-v5G54C
https://doi.org/10.1109/tsmc.2020.3004338
https://doi.org/10.1109/tsmc.2020.3004338
https://doi.org/10.1073/pnas.97.10.5592
https://doi.org/10.1073/pnas.97.10.5592
https://doi.org/10.48550/arXiv.1403.2877
https://doi.org/10.1145/1409060.1409068
https://doi.org/10.1145/1409060.1409068
https://doi.org/10.1007/s00371-005-0326-y
https://doi.org/10.1007/s00371-005-0326-y
https://learn.microsoft.com/en-us/azure/kinect-dk/
https://doi.org/10.7763/ijiet.2013.v3.316
https://doi.org/10.3414/me13-01-0109
https://doi.org/10.3390/s16050704
https://doi.org/10.1145/1877808.1877819
https://doi.org/10.1145/1877808.1877819
https://doi.org/10.1371/journal.pone.0199239

	Towards an Optimal Display of Superimposed Avatars for Motor Feedback
	Abstract
	Introduction
	Related Work
	Registration
	View Direction

	Methodology
	Registration
	Optimal Avatar Registration
	Scaling
	Registration Limitations
	Examples

	Viewpoint Selection
	Perspective Considerations
	Viewpoint Calculation


	Viewpoint Selection Evaluation
	Participants
	Experimental Setup for Exercise Recording
	Exercise Visualization
	Sample Exercises
	User Study Design
	Viewpoint Benchmark

	Results
	Viewpoint Selection
	Method Analysis
	Viewpoint Comparison

	Insights and Discussion
	Conclusion
	Author Contributions
	Data Availability
	References


