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ABSTRACT In this work, we propose a novel segmentation-based explainable artificial intelligence (XAI)
method for neural networks working on point cloud classification. As one building block of this method,
we also propose a novel point-shifting mechanism to introduce perturbations in point cloud data. In the
last decade, Artificial intelligence (AI) has seen an exponential growth. However, due to the ‘‘black-box’’
nature of many of these AI algorithms, it is important to understand their decision-making process when it
comes to their application in critical areas. Our work focuses on explaining AI algorithms that classify point
cloud data. An important aspect of the methods used for explaining AI algorithms is their ability to produce
explanations that are easy for humans to understand. This allows the users to analyze the performance of AI
algorithms better andmake appropriate decisions based on that analysis. Therefore, in this work, we intend to
generate meaningful explanations that can be easily interpreted by humans. The point cloud data considered
in this work represents 3D objects such as cars, guitars, and laptops.Wemake use of point cloud segmentation
models to generate explanations for the working of classification models. The segments are used to introduce
perturbations into the input point cloud data and generate saliency maps. The perturbations are introduced
using the novel point-shifting mechanism proposed in this work which ensures that the shifted points no
longer influence the output of the classification algorithm. In contrast to any previous methods, the segments
used by our method are meaningful, i.e. humans can easily interpret the meaning of these segments. Thus,
the benefit of our method over other methods is its ability to produce more meaningful saliency maps.
We compare our method with the use of classical clustering algorithms to generate explanations. We also
analyze the saliencymaps generated for some example inputs using ourmethod to demonstrate the usefulness
of our proposed method in generating meaningful explanations.

INDEX TERMS Artificial intelligence, explainable AI, point cloud data, segmentation.

I. INTRODUCTION
Explainable artificial intelligence (XAI) has become an
important field of research in the last decade. This is
mainly due to the exponential growth in AI which is finding
use in almost every field of application from agriculture
to autonomous vehicles. AI algorithms are now capable
of performing various difficult tasks with high accuracy.
This has prompted industries belonging to various fields to
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incorporate AI algorithms and improve the performance of
various tasks performed in those industries. However, most
AI algorithms performing challenging tasks have complex
architecture which makes it highly difficult to understand
how the algorithm is making a decision. Therefore, many
such AI models are referred to as ‘‘black boxes’’. This is one
of the primary concerns related to AI that hinders the use of
AI algorithms in high-risk tasks. Thus, as AI algorithms learn
to perform more complex tasks, the need to understand their
decision-making process becomes more important. Our work
contributes to this important field of research.
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AI algorithms work on various types of data such as text,
tabular, image, and point clouds. In this work, we propose
an explainability method that focuses on explaining the
classification models working on point cloud data as we
see a growing trend in the use of point cloud data for AI
model development in the last decade [2], [5]. We also
observe a similar trend in XAI research work targeting
algorithms working on point cloud data [9], [11], [27], [28].
However, there is still a significant gap between the XAIwork
developed for data types such as image and text compared to
point cloud data. Therefore, through our work, we attempt to
reduce this gap by contributing amethod based onmeaningful
segmentation to the point cloud-based XAI field of research.
Figure 1 shows an overview of our proposed method.

The main contributions of our work are:
• Segmentation-based XAI for understanding classifi-
cation networks working on point cloud data. The
proposed method is a perturbation-based method and it
is model-agnostic.

• Proposal of a novel point shifting mechanism for the
perturbation of point cloud data.

• Two types of introducing perturbations to generate
explanations that provide different interesting insights.

• Detailed analysis of the proposed method against
clustering-based methods to highlight its advantages.
The analysis shows how the proposed method generates
meaningful explanations.

The rest of the paper is organized as follows: Section II
gives a detailed overview of the literature that is relevant to
our work. Section III describes the proposed XAI method
in this work and the perturbation mechanisms utilized for
generating saliency maps. It also provides an overview of
the data and AI models used in this work. Section IV
provides a detailed analysis of the proposed method using
multiple examples to indicate the usefulness of our method.
Section V contains our final remarks regarding the work and
the direction in which the future work can progress.

II. RELATED WORK
As point cloud data is gaining importance in AI devel-
opments, the research related to explaining AI algorithms
working on point cloud data has also seen an upward trajec-
tory. Many authors have attempted to provide explanations
for these algorithms employing various types of explain-
ability mechanisms. Mulawade et al. [11] have provided a
detailed survey of all the XAI literature addressing the
issue of explainability for AI models working on point
cloud data. Saranti et al. [14] provided a survey focusing
specifically on the explainability of graph neural networks
(GNNs) working on point cloud data. Among the different
types of XAI methodologies proposed in the past, the
perturbation-based methods have found greater importance
in explaining point cloud-based AI models. This is evident
in the list of papers surveyed by the authors in [11] with
papers proposing perturbation-based XAI methods being the
highest in number among the methodologies used. Some of

the most prominent perturbation-based methods (considering
all types of data such as image, text, and point clouds)
are SHapley Additive exPlanations (SHAP) [7] and Local
Interpretable Model-agnostic Explanations (LIME) [13]. The
perturbation-based XAI methods for point cloud data use
different types of perturbation to generate explanations for the
working of AI models. We describe them below and highlight
the need for our work.

Zheng et al. [28] proposed an XAI method that computes
saliency maps by introducing perturbation into the input data.
The perturbation method used in this work uses the process
of moving a specific point to the center of the point clouds
to introduce perturbations in the input data. The authors
consider the spherical coordinate system to compute the
attributions corresponding to the points as they are gradually
shifted to the center of the input data.

Taghanaki et al. [19] proposed a perturbation-based XAI
method for explaining classification networks working on
point cloud data. They proposed a method called PointMask
which learns to mask out points in the input data based on
their contribution to the output class score.

Shen et al. [16] proposed a perturbation-based XAImethod
for analyzing the classification network working on point
cloud data. The authors used Shapley values [15] to compute
saliencymaps. The input point cloud is segmented into a fixed
number of regions and points belonging to specific regions
are moved to the center of the point cloud data to measure
the changes in the output target class to generate a saliency
map.

Verbung [25] proposed a perturbation-based XAI method
for understanding a segmentation model working on point
cloud data. The author introduced perturbations into the input
data by modifying specific regions (such as the shape of a
manually selected part of an object) in the input point cloud
data and measuring the effect of this perturbation on the
segmentation output.

Tan and Kotthaus [23] proposed an XAI method that
adapts LIME [13] to explain the decision-making process
of classification models working on point clouds. The point
cloud data is divided into multiple regions using a clustering
method and perturbations are introduced using these clusters
to compute saliency maps using the LIME methodology.

Tan [21] proposed another perturbation-based XAImethod
for point cloud-based AI models that perform a classification
task. In this method, the target output class score is
maximized by modifying manually selected parts of the input
data. The authors made use of autoencoders to encode and
generate new input samples.

Tan [20] also proposed an XAI method for understanding
a classification network working on point cloud data that
is based on feature ablation. The author proposed removing
specific features (identified by the author) from all the data
instances in the training dataset and retraining the model
on the perturbed data. The change in classification accuracy
achieved by the model is then used as an attribution that
indicates the importance of the removed features.
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FIGURE 1. An overview of the XAI pipeline proposed.

Tan and Kotthaus [24] used integrated gradients [18] to
identify critical points in the input point cloud data and use
these critical points to perturb the input data.

Miao et al. [10] proposed Learnable Randomness Injection
(LRI) that provides an explanation for the working of a
classification model with point cloud data as its input. The
proposed method learns to inject randomness (perturbation)
into the input data during the training process taking into
consideration the performance of the AI model in classifying
the data.

The most recent contribution of Tan [22] to the topic
proposes an activation-flow-based AM method named Flow
AM that makes use of the activation maximization of
the output target class and also forces the neurons in the
intermediate layers to align their activation values to the
values that correspond to actual input instances during this
process.

Atik et al. [1] adapted SHAP for interpretation of the
classification model working on photogrammetric point
cloud data. The authors mainly focused on the explainability
of ensemble classifiers in this work.

Another adaptation of Shapley values for understanding
point cloud-based AI models was proposed by Shen et al.
[17] where the authors divided the input point cloud data
uniformly into multiple regions and computed Shapley
values. The perturbation method used in this work was
the ‘‘point shifting’’ mechanism where the points of some
regions are moved to the center of the point cloud
data.

Lavasa et al. [6] adapted SHAP for analyzing the
performance of AI models that predict the accuracy of laser
scanning devices.

However, none of the above methods mention or describe
using meaningful segments to introduce perturbations into
the input data unless introduced manually by the developers
of the methods. The use of meaningless segments for
perturbation leads to the generation of saliency maps with
attributions assigned to data points that are difficult to
interpret. Furthermore, methods employing the perturbation
mechanism by shifting or removing individual points are
computationally expensive. In addition to this, we also
believe that individual points do not carry important informa-
tion such as structural information that is crucial information
in point clouds. This important information is captured by a
set of points. Therefore, the perturbation mechanism should
consider using sets of multiple points in the point cloud
data to introduce perturbations instead of individual points.
Furthermore, the information captured by these sets of points
should bemeaningful. This leads to the generation of saliency
maps that are meaningful, and therefore, easy for humans to
interpret. In addition to this, perturbations introduced into the
input data should generate an input where specific features
have no influence on the output.

In this work, we propose a perturbation-based method that
makes use of meaningful segments generated by an algorithm
to perturb the input data and compute attributions based on the
change in the output value of the target class.We also propose
a point-shifting mechanism for introducing perturbations in
point cloud data that meets the requirement mentioned above.

III. SEGMENTATION-BASED XAI
The proposed segmentation-based XAI method for point
cloud classificationmodels utilizes a segmentationmodel that
generates meaningful segments from the given input point
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cloud data. An overview of the proposed method is shown
in Figure 1. It consists of four stages:

• Classification
• Segmentation
• Perturbation
• Saliency mapping

In the first stage, the input point cloud data is used as the
input for the classification model which predicts the output
class of this data. This is the same classification model that
we intend to understand in the XAI process. Based on the
output class, the corresponding segmentationmodel is chosen
from the list of pre-trained models. In the second stage,
the selected segmentation model is used to meaningfully
segment the input point cloud data. The resulting segments
are used in the third stage to perturb the input data. Using the
classification model and the perturbed input data, a saliency
map is computed in the final stage of this pipeline.

A. SEGMENTATION
In our XAI method, we intend to segment the input point
cloud data in a meaningful way. This means that the
segments produced by the segmentation mechanism are easy
to understand for humans. For example, the segmentation
of point cloud data representing a human 3D model into
segments that represent the head, hands, legs, and torso. In our
work, we use two segmentation mechanisms to divide the
input point cloud data into multiple meaningful segments.
These are explained below.

1) SEGMENTATION MECHANISM
This mechanism consists of AI models that are trained for
part segmentation tasks on the point cloud data. Thesemodels
use the same input data that is used by the classification
model, identify different meaningful segments in the data,
and assign them with specific labels. The dataset used in
our work consists of point cloud data instances representing
16 types of 3Dmodels. To ensure better performance, we train
segmentation models to segment data instances representing
a specific 3D model such as airplanes or cars instead of
training one single segmentation model to segment point
clouds representing every kind of 3D model. Therefore,
we have 16 segmentation models with each model catering to
segmenting a specific type of point cloud data. Figure 2 shows
the segmentation of point clouds representing an airplane,
a chair, and a rocket by the three corresponding segmentation
models.

2) SEGMENTATION+CLUSTERING MECHANISM
The dataset taken into consideration in this work contains
point clouds representing various types of 3D models. Some
of these models contain features that consist of more than
one part, such as the four wheels of cars, the two wheels of
motorbikes and the two wings of airplanes. The segmentation
algorithms classify these features as one class/group. This
leads to perturbations where all parts of these features

FIGURE 2. Examples of point clouds segmentation performed by our
segmentation models and their corresponding ground truth labels.

are shifted (in case of presence of a feature mechanism,
see III-B2) to a chosen point or retained (in case of absence
of a feature mechanism, see III-B1) in the input with
remaining segments shifted to the chosen point. This leads
to the generation of saliency maps that contain the same
saliency attribution value attached to these features belonging
to a single class. This can be observed for the wings of
airplanes in the saliency maps visualized in Figure 4c and
Figure 6a and their corresponding bar plots Figure 4d and
Figure 6b. However, the relevance of these multiple features
that are grouped into one class is not identical in many cases.
Therefore, it can be important to understand the influence
these individual features have on the output class score in
addition to their influence as a group.

To generate saliencymaps for individual features, wemade
use of clustering algorithms for the segmentation-based
mechanism to further segment the input point cloud data.
The segmentation model’s output is used by the clustering
algorithms to further cluster the data. We use two clustering
algorithms: 1) DBSCAN [4] for determining the number
of clusters in a given segment of the segmentation output.
2) KMeans [8] clustering algorithm to cluster the given
segment based on the number of clusters determined by
DBSCAN. We use this combination because the DBSCAN
algorithm tends to classify some of the outlying points
of the segment as outliers and assigns a separate value
to them. This leads to undesired clusters. To avoid this,
we combine it with KMeans which takes the number of
clusters (without taking outliers’ class into account) as input
and produces the desired number of clusters. Figure 3 shows
examples of the segmentation of point clouds representing
a motorbike and an airplane using the segmentation and
segmentation+clustering methods. Figure 3a is the output
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FIGURE 3. Clustering of the segments produced by the segmentation
models to obtain finer segments.

of the segmentation model that identifies the wheels of the
motorbike as one segment. Similarly, the wings and engines
are labeled as a single segment each, as shown in Figure 3c.
The segmentation+clustering algorithm clusters the wheels
of the motorbike to produce front and rear wheels as shown in
Figure 3b. The method also clusters the wings of the airplane
into two separate clusters. A similar result is observed
with respect to the engines of the airplane as shown in
Figure 3d.

B. PERTURBATION MECHANISM
As mentioned in Section I, the proposed XAI method in
this work is a perturbation-based method. We use two types
of perturbation introducing mechanisms to generate saliency
attributions providing interesting insights into the working of
the classification model. We explain these mechanisms and
the rationale behind them below.

1) ABSENCE OF A FEATURE
The perturbation mechanism used in this work introduces
perturbation by removing a specific segment from the
input data. Removing here refers to shifting all the points
belonging to this specific segment to a chosen point in the
input data. A segment can be an individual feature (e.g.
bonnet in a car) or a collection of similar features (e.g.
wheels of a car). The perturbed data instance is then used
as input for the classification model to compute saliency
attributions. The saliency attributions are computed as
follows:

SAF (x) = |P(a) − P(a′)| (1)

where SAF (x) is the saliency attribution corresponding to
the segment x that is used for perturbation, a is the
actual input, a′ is the perturbed input, and P(s) refers to
the output class score by the classification model for a
given input s. Figure 4 shows an example of this saliency
mapping method for input point cloud data representing an
airplane.

FIGURE 4. Saliency map produced by our method for the given input
point cloud data representing a plane. Note: Refer to the ‘segmentation
output’ figure (b) for corresponding parts represented along the x-axis in
the bar plot (d).

FIGURE 5. Structural information carried by a point cloud data (left
figure) and its perturbed data where all the points belonging to one
segment (right figure) are moved to the center of the data (center figure).

2) PRESENCE OF A FEATURE
In addition to the above-mentioned method, we propose a
variation of it where we analyze the impact of individual
features (or segments) on the output data. Here, we introduce
perturbation into the input data by retaining a specific seg-
ment and moving all the points belonging to other segments
to the center of the point cloud data. Mathematically, it can
be expressed as follows:

SPF (x) = −|(P(a) − P(a′′))| (2)

where SPF (x) is the saliency attribution corresponding to the
segment x, a is the actual input, a′′ is the perturbed input
where the points not belonging to the segment x are moved
to the chosen point, and P(s) refers to the output class score
by the classification model for a given input s. The minus
sign (−) is used for the visualization purpose. It allows the
segment having the highest influence on the output value
to have the highest attribution while the lowest influential
segment has the lowest value.

The saliency attributions generated by this method can
be interpreted as a measure of the influence an individual
segment has on the output prediction value when it is the only
segment present in the input. This informs us about how good
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FIGURE 6. Saliency map produced by using the ‘‘presence of feature’’
method for the input used in Figure 4. Note: Refer to the ‘segmentation
output’ figure (b) in Figure 4 for corresponding parts represented along
the x-axis in the bar plot.

a specific segment is in carrying crucial information on its
own. This interpretation is slightly different from the previous
one (described in III-B1) as it does not provide the model
with any other information that is carried by other segments
or the information that is generated when we combine two
or more segments as shown in Figure 5 where the perturbed
data (Figure 5b) manages to capture the structure of chair
even after the points belonging to one segment (Figure 5c)
are moved to the center of the data. Therefore, we decided
to look into how much information a single segment carries
that is independent of all the other segments. Figure 6 shows
the saliency attributions computed using this perturbation
mechanism for the same input point cloud as data considered
in Figure 4.

C. DATA AND MODEL
The dataset used in this work contains the part segmentation
of a subset of ShapeNetCore [3] models based on the work
of Yi et al. [26]. The dataset consists of ∼16000 models
from 16 shape categories and the number of data instances
in each category varies from 55 to 5266. The number of parts
for each model in each category also varies from two to six
as each category consists of different types of 3D models
representing a specific object such as an airplane. We use this
dataset for both classification and segmentation tasks.

We use classification and segmentation networks based
on the PointNet [12] architecture. The classification model
is trained on the above-mentioned dataset containing point
clouds of 16 different categories. We trained two classifi-
cation models, one with the default orientation of the point
cloud objects in the dataset and the other with the augmented
dataset where we modify the orientation of the point cloud
objects. We trained the former classification model (that uses
the data with default orientation) for 10 epochs with the
stochastic gradient descent (SGD) optimizer at 0.001 learning
rate and the latter (with augmented data) for 100 epochs
(because of the increased complication in the input data
due to the augmentation) while keeping the remaining
hyperparameters unchanged.

To obtain better segmentation results, we trained individual
models to segment particular point cloud data types. Our
dataset consists of point clouds representing 16 types of 3D

FIGURE 7. Shifting points to the centroid of the input point cloud data.
Points representing the seat (in (b)) and seat & backrest (in (c)) are
shifted to the center of the input data (marked with red rectangle).

objects such as airplanes, tables, and cars. Thus, we trained
16 segmentation models with each model focusing on
segmenting the point cloud data representing a specific
3D object. We also augmented the training data for these
segmentation models by modifying the orientation of the data
instances. This is similar to the augmentation performed on
the training data for classification models. We trained these
models with SGD optimizer at 0.001 learning rate with the
number of epochs varying from 20 to 150 depending on
the size of the subsets representing the 3D objects. Figure 2
shows some examples that demonstrate the performance of
our trained segmentationmodels on their corresponding input
data.

The output of these segmentation models will be used to
introduce perturbations into input data instances as described
above. We use the point-shifting mechanism to introduce
perturbations as it allows the input point cloud instance to
retain its number of points thereby avoiding complications
in the saliency method. The point-shifting mechanism is
described in the following subsection.

D. POINT SHIFTING MECHANISM
To introduce perturbations into the input data, as mentioned
in in subsection III-C, we use the point-shifting mechanism.
Zheng et al. [28] proposed the idea of shifting the points to
the center of the input data instead of dropping them from
the input. This is based on the intuition that all the outward
points in the point cloud determine the output class score of
the classification model as they encode shape information
while the points closer to the center of the point cloud have
almost no influence. However, this process of shifting the
points to the center of the point clouds does not fit well with
our work. For example, Figure 7 shows an example of the
perturbation of the input data by moving the points belonging
to two segments (seat and backrest of the chair) to the center
(marked by a red rectangle) of the input data. Thus, the center
of the input data now contains a large number of input points
and is not actually a part of the retained structure. Therefore,
it can act as an additional feature in the input data which
is undesirable as we expect the shifted points to have no
influence on the decision-making process.

To address this issue, we need to determine a point in
the input space where the points belonging to the specific
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segment can be shifted, and the shifted points do not influence
the output class score. This is possible when the shifted
points do not add any structural information to the data.
Shifting the points to the center of the retained structure
does not always fulfill this requirement. This is evident
in Figure 7c where the center of the retained structure
(the legs of the chair) lies in between the leg structures
and thus acts as an additional structure in the perturbed
data.

One feasible solution is when the selected point for shifting
the points is itself a part of the retained structure in the
perturbed input data. This will allow the shifted points to
be a part of the perturbed data and provide no additional
structural information for the classification model. Since we
have multiple points in the retained structure in the input data,
we choose a random point from it for shifting the points to.
We observe that the saliency attributions corresponding to
the features do not vary when selecting random points for
perturbation.We discuss this mechanismwith some examples
in section IV.

IV. RESULTS AND DISCUSSION
In this section, we evaluate our method using various
examples and criteria to highlight the usefulness of the
mechanisms that are part of our proposed method.

A. CLUSTERING-BASED METHOD
In this subsection, we analyze the use of classical clustering
algorithms for segmenting point cloud data, indicate the
issues associated with their use, and describe how our method
overcomes these issues. For the analysis, we used clustering
algorithms such as the k-means algorithm to generate clusters
in the input point cloud data and use these clusters to
perturb the same input data to compute saliency attributions.
Figure 8 shows examples of using the KMeans clustering
method with varying numbers of clusters, c, for generating
segments for computing the saliency maps. We used the
absence of featuremechanism to introduce perturbations and
compute saliency attributions. We observed that the saliency
maps differ as we vary the number of clusters. The most
important part for c = 3 is the top part of the chair and
as we increase c = 12, the most important part shifts to
the bottom part (legs) of the chair. We observed similar
behavior with other clustering methods such as spectral and
agglomerative clustering. This makes the use of clustering
methods for XAI methods tailored for point cloud data
unreliable. Our proposed method addresses this issue by
using segmentationmodels that are trained to segment a given
point cloud data into a specific number of segments. Another
major advantage of using segmentation models over classical
clustering algorithms is their ability to learn and adapt to new
types of data instances. In other words, we can improve the
performance of segmentation models by training it on more
data whereas the classical clustering algorithms do not offer
this flexibility.

FIGURE 8. Saliency maps produced by the absence of feature mechanism
for clusters produced by KMeans clustering method. c represents the
number of clusters.

B. USE OF RANDOM POINT
As mentioned in subsection III-D, it is important to find
a point in the input space where the points belonging to
selected segments can be shifted, and these shifted points
do not add any structural information to the perturbed data.
In this section, we use an example to discuss and understand
how our proposed method of selecting a random point in
the retained structure yields better results than other methods
such as moving the points to the origin or to the center of the
point cloud data.

Figure 9 shows examples of input data perturbation for
an input data representing an airplane. Figure 9b is the
segmentation output obtained from a segmentation model
which is used to introduce perturbations into the input data
shown in Figure 9a. For this example, we selected the
segment representing the wings to introduce perturbations.
We selected a random point in the retained structure (structure
without wings) and shifted the points belonging to the
segment representing wings. Two examples are shown in
Figure 9 with one random point selected in the tail region
of the airplane (see Figure 9c) while the other random point
is selected in the central part of the fuselage (see Figure 9d).
We shift the points representing the wings to these random

VOLUME 13, 2025 140181



R. N. Mulawade et al.: XAI for Point Cloud Data Using Perturbations

FIGURE 9. Perturbation of the input data using random points (marked in
(c) and (d)) selected from the retained structure.

points and use these two perturbed data instances to analyze
the effect of the perturbations. We use them as input for
the classification model and study the change in the output
values. We observed that the output values (all 16 values in
the output vector) did not change. In other words, the choice
of point in the retained structure had no influence on the
output values. We observed a similar pattern when we chose
different points in the retained structure to shift the points.
This observation strengthened our intuition that when the
shifted points are a part of the retained structure (irrespective
of the point selected in the retained structure for the shifting
process), they do not provide any additional structural
information for the classification model. Therefore, we use
the random point selection mechanism for our point-shifting
process.

C. EFFECTS OF DIFFERENT FEATURE INSTANCES: WINGS
VERSUS FUSELAGE
The datasets used for training classification models usually
contain a large number of samples representing different
classes. In addition to the differences between the samples
representing each class, samples representing a specific
class also vary slightly with respect to the information they
carry. One such example from our dataset is the use of
point clouds representing airplanes with varying numbers of
engines on the wings. In this section, we analyze the saliency
maps generated by our method to understand how different
numbers of engines on the wings affect the output class score.
These saliency maps are generated using the classification
model that was trained on the dataset containing point clouds
in the default orientation.

In Figure 10, we have saliency maps for eight input point
cloud data instances representing airplanes. The saliency
maps are generated using the absence of feature mechanism
and the segments are generated using the segmentation
models (no clustering). We observe that the saliency maps
indicate that the wings are the strongest features for examples
in the top row (Figure 10a, Figure 10b, Figure 10c,

Figure 10d), while the fuselage is the most important feature
for the classification model in the bottom row (Figure 10e,
Figure 10f, Figure 10g, Figure 10h). A more detailed
examination of these samples shows that the major difference
between the examples on the top row and bottom row is
the number of engines. The examples in the top row have
two engines whereas the examples in the bottom row have
four engines. The shifting of wings to a selected point in the
top four examples leads to the two engines adding minute
information to the retained structure as these engines are
located very close to the fuselage. However, in the remaining
examples, the shifting of wings to the selected point leads
to a structure with two engines on each side of the fuselage.
This captures more information with respect to the overall
structure of the airplane and thus leads to a lower influence
of wings on the output class value. This is also evident
in the color scales of the figures that use saliency values
to indicate how influential the features of airplanes are.
We observe that the magnitude with which wings affect the
output class score is significantly higher compared to other
features in the top row’s examples. However, the presence
of two additional engines in the bottom row’s examples
brings this magnitude down significantly and leads to the
fuselage’s influence becoming the biggest among all the
features.

This example gives us an important insight into how
the classification model learns to identify and take into
consideration different structural information captured by
point clouds representing a specific object such as an airplane
and make decisions based on this information.

D. SEGMENTATION+CLUSTERING: USE CASE
As described in subsubsection III-A2, the
Segmentation+Clustering mechanism allows the users to
analyze a classification model by taking individual features
into account instead of using a set of similar features as one
segment. This is useful in understanding the contribution of
individual features because a set of features can provide more
structural information for the classification model compared
to individual features. For example, a set of wheels in a
motorbike or car captures more information than a single
wheel. We analyze an example to see if this is reflected in
the saliency maps produced by our methods.

Figure 11 shows an example of saliency maps generated
for point cloud data representing a motorbike. The division
of input data into multiple clusters is performed using both
segmentation and segmentation+clustering mechanisms.
We observe that the wheels are clustered as one segment in
Figure 11a while the segmentation+clustering mechanism
manages to cluster them as separate segments as shown in
Figure 11c. We observe that the saliency map generated
using the segmentation mechanism indicates high importance
for wheels. However, it does not provide any information
regarding which wheel is more influential. This is addressed
by the segmentation+clustering mechanism which enables
us to introduce more specific perturbations into the input
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FIGURE 10. Saliency maps of point clouds representing airplanes using the absence of feature mechanism.

FIGURE 11. Saliency maps of point clouds representing motorbikes using
the absence of feature mechanism.

data using individual wheels. The saliency map generated
using this mechanism is shown in Figure 11d. It shows
the front wheel to have more influence on the output class
score compared to the rear wheel. This is useful mainly
because thewheels of themotorbike are not identical and their
locations with respect to the remaining features in the input
point clouds are also different. Therefore, these wheels are
expected to have different levels of influence on the output
class score which is highlighted in Figure 11d.

E. PERFORMANCE ANALYSIS
We analyze the performance of our methods using the ground
truth of the segmentation task and noisy point cloud data as
the input for the classification model in the pipeline.

1) GROUND TRUTH
This analysis corresponds to the saliency maps generated by
our method based on the segments present in the ground
truth (GT) segmentation. The ground truth is used in the third
stage of our XAI pipeline which is used to perturb the input
point cloud data. Figure 12 shows an example of the saliency

FIGURE 12. Saliency maps produced with ((c) & (d)) and without ((e) & (f))
using the segmentation ground truth labels using the absence of feature
mechanism. Note: Refer to the segmentation ground truth figure (b) for
corresponding parts represented along the x-axis in the bar plot (d) & (f).

map generated for the ground truth of an input instance
representing an airplane. We use this scenario because the
ground truth is the ‘‘perfect output’’ of the segmentation
model. In other words, ground truth would be the output of
the segmentation model if it had 100% accuracy. Therefore,
it is important to analyze the performance of segmentation
models in generating the saliency maps as they are a central
part of our proposed method.

An example of the saliency maps produced using ground
truth and the output of the segmentation model is shown in
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FIGURE 13. Noisy input with 5% noise and its corresponding saliency
attributions produced by our proposed method.Note: Refer to the
‘segmentation output’ figure (b) for corresponding parts represented
along the x-axis in the bar plot (d).

Figure 12. We compare the saliency maps to analyze how
the inaccuracy of a segmentation model affects the saliency
attributions of the segments in the input data. We observe that
the segmentation model manages to produce saliency maps
((e) & (f)) similar to those produced using the segmentation
ground truth data ((c) & (d)). This highlights the ability of
segmentation models to generate meaningful segments with
high accuracy, which leads to the production of meaningful
saliency maps.

2) NOISY INPUT
During the training process, a classification model learns to
produce a desired output by tuning its parameters based on the
input instance provided and its corresponding ground truth.
At the end of the training process, the model parameters
are tuned well enough to produce the desired output for a
subset of the training dataset (assuming the model does not
reach 100% accuracy). However, to analyze the model more
effectively, it is important to test its performance on input
instances that the model has not seen during its training
process.

One of the most common mechanisms of generating new
examples for testing AI models is by adding noise to the
available data instances. We use this mechanism to test
the classification model as well as our XAI mechanism.
We introduce noise into the input data instances and
analyze the saliency maps generated. An example of this
analysis is shown in Figure 13. We observe that our
method produces similar saliency attributions for a noisy
input data instance that is generated by adding 5% noise
to the actual input data (see Figure 12e and Figure 12f).
We observed that the method produces saliency maps
with minute variations up to 10% noise level. However,
higher levels of noise magnitude lead to bigger changes

FIGURE 14. Distribution of the training data.

in the input data and, therefore, lead to the generation of
incorrect segmentation, leading to incorrect saliency maps.
This indicates that the classification model is robust to noise
in the input data and also highlights the performance of
segmentation models that are a major part of our proposed
method.

F. LIMITATIONS
One of the limitations of our proposed method is associated
with the use of a segmentation algorithm. This limitation is
the possible inaccuracy of the segmentation model that is
trained on the point cloud data. The segmentation models
used in this work have accuracy values in the range of
65%-80%. This is mainly due to two reasons. The first
reason corresponds to the imbalance in the dataset. The
dataset contains varying numbers of samples representing
individual 3D model types with some of them having less
than 100 samples as shown in Figure 14. This makes
learning difficult for the segmentation models. The second
reason corresponds to the structural information associated
with these 3D models. Some point clouds represent simple
3D models such as chairs, tables, and laptops which
make it easier for the corresponding segmentation models
to learn the segmentation task. However, point clouds
representing complex 3D models such as motorbikes, cars
and airplanes make learning more difficult for the AI
models.

The second limitation is also associated with the dataset.
This limitation is the requirement of a labeled dataset for
segmentation in case we decide to add another 3D object or
category to the classification task. This is due to the use of
segmentation models that are trained for the segmentation of
point clouds of specific categories.

The last limitation corresponds to the dependency of
the XAI method on the output label of the classification
model when working without human input in the pipeline.
Currently, the method uses the classification output to find
the corresponding segmentation model. However, when a
classification model incorrectly classifies the input data,
it will lead to selecting a segmentation model that is
inappropriate for the input data. However, human-in-the-
loop can easily resolve this problem with the user selecting
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the segmentation model based on the input point cloud
data.

V. CONCLUSION
In this paper, we proposed a segmentation-based XAI
method for understanding the decision-making process of
classification models working on point cloud data. The
proposed method is based on a perturbation mechanism.
It specifically uses meaningful segments to introduce per-
turbations and thus, produces more meaningful saliency
maps. We used two types of perturbation mechanisms to
generate explanations with two different perspectives. This
allows users to gain better insight into the decision-making
process of a classification model and the information carried
by each segment in the input data. For the segmentation
task, we proposed two mechanisms that leverage seg-
mentation models and clustering algorithms to generate
saliency maps. We also proposed a new point-shifting
mechanism for the perturbation, to improve explainability.
Applying the method to several representative examples,
we highlighted the usefulness of our proposed method
and analyzed its performance using different input data
instances. The proposed method is model-agnostic and
therefore can be used to explain any classification model
working on point cloud data irrespective of the model
architecture.

Our future work will be to address the limitations
mentioned in subsection IV-F.
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