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Abstract
In high energy physics, tracking particles in point-based particle detector data is important to reconstruct the particles’ trajectories. As
the numbers of particles can be in the hundreds or over a thousand, automatic algorithmic tracking is usually preferred over manual
tracking. However, in some cases, manual tracking is needed as a baseline to assess the quality of the algorithmic tracking. Tracking
particle locations manually is time-consuming and challenging when dealing with thousands of particles in the same data frame.

In this paper, we describe Semi-Automatic Particle Tracking (SAPT), a collection of methods that aid manual particle tracking and
visualization. These methods aim to make related particle hits easier to recognize by stretching the data and hiding likely irrelevant
hits based on an angle criterion. They also help with finding the most likely track among a set of intuitively selected detector hits.
These methods, together with a prediction of the most probable continuation of a track that can simply be accepted by the human
user, accelerate the manual tracking process tremendously. We demonstrate the usefulness and efficiency of our methods by applying
them to simulation data of a detector for proton computed tomography (pCT).

1. Introduction

In high energy physics, tracking particles and thus reconstructing trajec-
tories of particles in space has been supported algorithmically for many
years [Gro87, PRK88]. The conventional algorithms [PAB∗17] and,
more recently, the machine learning models [CFG∗18,ABC∗20] used
for this purpose, usually have to be developed or adapted for the specific
particle detectors in use. To assess the quality of an algorithmic track
reconstruction method for a certain detector, the resulting tracks should
optimally be compared against the correct (real) trajectories of the par-
ticles as a baseline or ground truth. These trajectories, however, are only
available in the case of a simulated detector. They obviously cannot be
available for the real detector because here they are what the algorithmic
reconstruction is striving to obtain in the first place. This dilemma in the
context of the real detector can be solved by experts performing the par-
ticle tracking on the real detector data manually and using these tracks
as ground truth. Unfortunately, manual tracking is challenging and time-
consuming when dealing with many particles in the same data frame.

In this paper, we therefore present a collection of visualization,
interaction, and prediction methods that supports experts in man-
ually tracking particles in a fast and accurate way. The result is
a framework for semi-automatic particle tracking (SAPT). Our
application case is proton tracking for proton computed tomography
(pCT) [CK76,SBK∗04] using a layered detector design (see figure 1)
as suggested by the Bergen pCT Collaboration [AKSP∗20].

Most of the presented methods are applicable for aiding manual
particle tracking in any point cloud representing locations of moving
particles at different time steps. Few of the methods depend on a

layered structure of the detector, and some on the fact particles usually
do not take arbitrarily sharp turns.

2. Background, Context and Data

The particle data used for demonstrating SAPT comes from a model
of a particle detector designed for proton computed tomography (pCT).

2.1. Background and Context

Proton computed tomography is an imaging technique first proposed
by Allan MacLeod Cormack [CK76, Cor63] in 1963. It describes
the use of proton trajectories for imaging, similar to X-ray computed
tomography (often simply called CT). This method was later picked
up in the context of proton radiation therapy. Here, tumors are targeted
with the so-called Bragg peak effect of fast-moving protons. Currently,
the amount of energy and thus the speed a proton needs to be deposited
in the tumorous cells can be calculated from X-ray tomography images.
Using pCT for the imaging instead would lead to less possible side
effects due to X-ray radiation exposure and a more precise calculation
of the needed energy. Additionally, pCT could be performed with the
same device in the same room as the radiation therapy. This avoids
relocation of the patient and thus possible movement of the tumor
between imaging (and thus therapy planning) and the actual therapy.

2.2. Data

To develop a particle detector and the techniques essential for creating
the pCT system, the Bergen pCT Collaboration [AKSP∗20] has been
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established. The data used to demonstrate our methods stems from
simulations performed during the development phase of the detector.
The detector consists of a number of pixel-based sensor layers (see
figure 1). Each layer captures the positions (hits) of the particles passing
it and the energy deposited when a particle interacts with the sensor
layer. The overall energy deposited by all hits of one particle, i. e. the
hits belonging to one trajectory, and the direction in which the particle
enters the detector are used to compute the pCT. When particles interact
with the sensor layers or the material between these layers, the direction
they are moving in can change slightly. As a result, the sequence of hits
of a single particle does not form a straight line but a slightly curved
path (see e. g.figures 2 and 10). This non-straight shape and the fact
that a single data frame (detector read-out frame) usually contains the
hits of numerous particles necessitates sophisticated tracking methods
to correctly reconstruct the particle trajectories from the hits.

Figure 1 shows a data set with 10,000 particles. A data set with 100
simulated particles, resulting in 87 trajectories and 2014 hits, is used
for all other figures and the video accompanying this paper. Due to
primary particles splitting into secondary particles before they hit the
detector, the amount of simulated particles and trajectories is not equal.
Secondary particles, particles that split off from other particles, are
removed from our data set as those are not relevant for the tracking.
Depending on the effectivity and efficiency of the developed detector,
the number of particles in one frame will lie in between the two
above-mentioned numbers of particles [PAB∗17].

3. The Problem

Currently, the automatic tracking algorithms are fed with data from
a Monte Carlo simulation [PAB∗17]. These help to develop different
algorithms and assist in training machine learning approaches. This
simulated data, however, might differ from the real detector data,
making the developed algorithm unstable. For this eventuality, ground
truth data needs to be manually created from the real detector data. For
several hundred or a thousand particle tracks, naive manual tracking
is an arduous task. Manually tracking one hundred tracks by naively
clicking on a single particle at a time can take a lot of time.

This is why, in this paper, we propose multiple support functions
that aid in the manual tracking so that creating a ground truth from the
detector data can be done as quickly as possible.

4. Related Work

The previous work related to our methods can be divided into three
main categories: algorithmic tracking, semi-automatic tracking and
selection methods. We discuss these methods in separate subsections
in the following.

4.1. Algorithmic Tracking

A large variety of algorithms for tracking the movement of particles
have been proposed in the past. Here, we will focus on more recent
methods that have been developed especially for our pCT application
and for the Large Hadron Collider (LHC) at CERN [CER21]. This
allows us to understand what inspired some of SAPT’s methods.

Usually, algorithmic tracking methods rely on two types of

Figure 1: Rough model of detector geometry with hits of 10,000
simulated protons entering the 43 (2 front-tracker and 41 detector)
layers from the lower left. The arrow indicates the proton beam
direction. Hits in the detector layers are color coded by the number of
detector pixels firing at the same time (cluster size). The colorful color
scale has been chosen for illustration purposes only.

information. The first type are geometric properties of the particle
locations. Examples are spatial proximity of the points, the angle
formed between three consecutive points and the shape of curves the
points should lie on. The second type are physical properties at the
particles’ location. An example for this being the energy deposited at
the measured particle location. Furthermore, it is not uncommon to use
a combination of the two types.

Recently, a number of methods for tracking particles in the LHC
using machine learning methods (ML) have been developed during a
competition called TrackML [ABC∗20]. Many of these methods relied
on starting at a triplet of points and extending this seed by extrapolating
it into a helix shape. The point closest to this extrapolation would
be added to the existing tracking to extend it. In this case, a roughly
helix-like shape is expected due to the special magnetic field used in
the LHC or the detector itself. The extrapolation step in some methods
depends not only on the last three points, but also on the local magnetic
field as a physical property.

In the context of detectors as the one shown in figure 1, algorithms
based on the angle formed between successive detector hits have been
developed. One of these algorithms (see [PAB∗17] based on [SF10])
uses the relative speed and the composition of the detector to calculate
an expected angle. An improved version adds a more accurate
calculation for the scattering [PMO∗20]. In an additional step, the
energy deposited when particles hit detector layers can be used to filter
out wrongly reconstructed tracks [PAG∗21].

A different method [Sik17] tries to keep competing choices open as
long as possible. Here, track candidates and their corresponding hits
(the nodes) form a usually highly connected network (a bipartite graph),
allowing for multiple hit to track assignments (edges). After that, a depth-
limited search on sub-graphs is performed. It aims at maximizing the
number of hits on tracks, and minimizing the sum of a track-fit measure.

Broadening the view, we also looked at an approach [ESF21] that
focuses more on biological cells. This approach uses a three stage
object tracking. Here the object is first detected, then classified and
tracked [ESF21].
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Some particle tracking algorithms are mainly based on calculating an
approximated turn angle for the detector hits as it goes from one layer
to the next. These calculations include the kinetic energy of the particle.
The problem here lies in having only the deposited energy of a particle
in a certain point, and thus needing to sum up from the end to get an
approximate kinetic energy. That would mean the user always has to
start at the end of the track. What we can adopt from the algorithms is the
principle of a turn angle, as this can be calculated between the positions
of the detector hits. Inspired by the mentioned works, the methods in
SAPT use extrapolation, an angle criterion and a graph search to support
the user. An algorithm [vdE02] using Kalman filters [Kal60] to estimate
the course of tracks could be useful in future extensions of SAPT.

Many more automatic tracking techniques which work on data with
characteristics different than those of our point cloud data have been
devised in the past. One example are feature tracking methods that work
on 2D or 3D time-dependent flow simulation data [PVH∗03,YMS∗21].
Other approaches work on image data, e. g., for tracking biological
cells [ESF21]. As the characteristics of the data used by these techniques
are so different, they are not applicable in our case.

4.2. Semi-Automatic Tracking

Many of the semi-automatic tracking techniques proposed in the past
focus on time-dependent 2D image data [ESF21]. One example of
semi-automatic tracking working on sets of 2D images is the software
TrackMate [TPS∗17]. It is a plugin of the Fiji [SACF∗12] ImageJ
distribution that allows automatic, semi-automatic and manual tracking
of particles, which in their terminology means cells. TrackMate allows
fully manual tracking of a cell or fully automatic tracking of a cell.
It also allows changing the parameters for the automatic tracking
and manual correction of errors. Due to the latter, it can be seen as a
semi-automatic approach.

Our data, being only one full set of hits in different detector
layers, could be interpreted as representing slices (layer) in time.
But TrackMate’s algorithms work on pixel data, while our data is a
somewhat structured point cloud. Converting this point cloud into
pixel data would lose accuracy and the possibility of adding additional
detector data, like the energy deposition, to the tracking. Working with
pixel data is also more time-consuming than working with a point cloud,
especially when increasing the resolution of the image to overcome the
loss of accuracy. To test this, we converted our point cloud data to pixel
data and tried tracking the particle movement with track mate. While
lower image resolutions manage the tracking in less than one minute,
no trajectory is tracked correctly. We tested resolutions up to eight
times the minimum resolution of our data and while the accuracy did
go up to roughly five percent, the tracking did take more than one hour.
Therefore, TrackMate’s approach is not one we can follow. Nevertheless,
the idea of taking fully automatic tracked data and giving the user
the ability to manually correct the tracks could be a good extension
for the future. This can be coupled with a visual representation of the
probability of the tracks’ correctness (e. g. color coding).

4.3. Selection Methods

Since we have a 3D collection of detector hits and need to find a
track among them in a projection on a 2D screen, we also examined
approaches for 2D selection of objects in 3D. These approaches use

different techniques to deal with the issue of bridging the gap between
2D and 3D in a meaningful way.

The first approach deals with the selection of 3D lines in a direct
volume rendering [WPVH13], i. e. in an inherently 3D rendering,
of continuous 3D data. It builds a graph through a set of candidate
points [WVFH12] and uses Dijkstra’s algorithm [Dij59] to find the
shortest path through it. The second approach addresses selection of
structures in 3D point clouds. It builds a 3D triangle mesh out of a 2D
lasso selection. The mesh surrounds the points belonging to the desired
structure [YEII12]. This approach has been later extended to work more
locally and thus be more precise [YEII16]. Additionally, a GPU-based
acceleration has been proposed [KK18]. Although they deal with
different data [WPVH13] or do not aim at lines [YEII12] (here tracks),
the interaction [YEII12] and graph-based methodology [WPVH13] of
these approaches inspired our SAPT method.

5. Methods

In order for the methods to be applicable, the data needs to adhere to
a few basic assumptions. The particle detector data needs to contain the
(x,y,z)∈Rn coordinates and the corresponding energy deposition Edep
of the hits. Also, the coordinate that is on the layer axis needs to be
exactly equal to all other coordinates on the same layer. E. g., if the layer
axis is the z axis, which we assume throughout this paper, we assume
all hits of the same layer share exactly the same z coordinate. Since the
detector is constructed of multiple layers, most of our methods assume,
a track can only include a maximum of one hit per layer.

We can divide our methods into visualization and selection
helper functions. The visualization functions give the user a better
understanding of the relation between hits, while at the same time only
impacting the visual appearance and not the selection. The selection
helper functions on the other hand impact and filter the selection of
the user. A method can be a mix of these two categories and aid the
user visually while impacting the selection.

5.1. Stretching the Data

The first pure visualization function is a simple stretching. Stretching
the data with respect to the x and/or y axes can make the space between
hits in one layer more apparent (see figure 2), and thus allows the
user to better see how hits are related in z direction. A fast and easy
way, e. g., a keyboard shortcut, to scale the whole data in three axes
individually is beneficial for the workflow.

5.2. Selection of Multiple Hits

Having to click and precisely target each hit is a tedious task, especially
if there are numerous hits. It would involve a lot of zooming and
rotating to select one single hit. Therefore, selecting multiple hits at
once is a better option as it enables the user to perform a loose selection
around the hits without need for a precise click. For multi-selection
methods, we employed three different approaches: brush, box, and
lasso (see figure 3). With the brush selection, users can draw over hits
like they would with a paintbrush. It is the slowest of the methods, but
it also allows being the most precise. The box selection lets the user
drag a box around their selection. This is the fastest selection method
but also the least precise as it forms a rectangle around the dragged area.
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Figure 2: Stretched visualization of data detector hits. Left: No scaling
yields an extremely cluttered image. Right: x and y scaled by 4 makes
different tracks better distinguishable.

Figure 3: The different selection types. From left to right, brush
selection, box selection and lasso selection. The brush and lasso
selections are free hand, while the corners of the box are dragged from
point A to point B. Box and lasso select what is inside the selection,
while brush selects what is covered by it.

As a middle ground between these two methods, we have the lasso.
Like the brush it can be freely drawn and like the box it selects the hits
inside the boundary curve. Since brush and lasso are free hand selection
methods, they are most effective with a graphics tablet and a digital pen.

5.3. Adaptive Visibility

This is another visualization function, but in contrast to the stretching,
the adaptive visibility can also be used as a pre-filter for the selection.
It especially helps when selecting multiple hits, as in section 5.2. There
it can filter out unrelated hits before they get mistakenly added to the
track. A hit can be made invisible or less visible (“hidden”) if the angle
deviation α it would need to connect to the currently selected hit is
higher than the specified maximum (see figure 4). Furthermore, using
the distance between the two hits and the thickness of the detector layer,
a factor for the angle maximum can be calculated. This factor allows
us to apply the maximum on a per-layer basis and not as an absolute
angle. The angle is calculated between the line from the previous hit to

Figure 4: Adaptive visibility with an angle of ten degrees. The orange
hit is the currently selected hit. Hidden hits are displayed as transparent.

Figure 5: Angle calculation of adaptive visibility. Red is the currently
selected hit and blue is the hit we want to calculate the angle α to. The
white hit is the previous connection.

Figure 6: When selecting multiple hits in one layer, our approach finds
the one hit that results in the straightest path. The gray dotted lines
are the layers and the blue dotted line is the selection (here a lasso
selecting 11 hits). The red line is the result of the selection.

the selected hit and the line that would be newly created (see figure 5).
Based on the simulated data and the distribution of their angle changes,
a good value for the maximum angle αmax can be calculated. αmax
should be roughly between ten and twenty degrees [PMO∗20].

5.4. Straightest Path

When using the multi-selection techniques (see section 5.2), there is a
high probability of unrelated hits in the selection. This is due to the 2D
nature of the selection, the 3D nature of the detector data and the dense
clustering of the hits. Therefore, we calculate the path with the smallest
angle deviation, which we call straightest path, among the hits of the
selection. This allows the users to be less precise with their selection
and lets the algorithm take over filtering unrelated hits out (see figure 6).

To find the straightest path we first create a graph containing every
possible connection between the selected hits in consecutive layers with
a weight. This weight is the angle of the resulting line between the two
hits and a perpendicular line through the detector layers (see figure 7).
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Figure 7: The created Dijkstra graph is on the left while the result is
on the right. Every edge has the absolute angle as weight. In the result
the weight is the sum of degrees a particle has to turn to get to the edge.
The layers are denoted by the gray dotted lines.

This graph is the prerequisite for the Dijkstra [Dij59] algorithm that
is employed hereafter.

In contrast to a normal Dijkstra algorithm, where the weight of an
edge is absolute, our implementation uses a relative weight. This means
the weight of an edge is relative to the weight of the preceding edge. So
what the algorithm uses as weight is not the one that has been calculated
in the previous step, but it is the difference between the absolute weight
of the current edge and the absolute weight of the previous edge (see
figure 7). All edges that originate in the first layer of selected hits have
a weight of zero, as there is no preceding edge that could determine the
probability of those edges. If there are multiple hits in the first selected
layer, a graph is built for each one of them and the path with the lowest
weight among them is chosen as the straightest path. The processing of
the graphs can be easily parallelized for a better performance, as they do
not interact with each other. This is also included in our implementation.
Every multi-selection by a user and the prediction mechanism described
in section 5.5 use the straightest path method.

5.5. Prediction

As we now know how to find the straightest path among a set of
hits, we can also give the user a preview of how the track might
continue. Employing the method described in the previous section on
the surrounding layers of the already constructed track, we can calculate
the most likely continuation of said track. Normally all the hits on the
surrounding layers need to be taken into account for the calculation,
but using the constraint of the adaptive visibility (see section 5.3)
as a pre-filter for the prediction, the number of hits to check can be
drastically reduced. After calculating the prediction, the candidate hits
should be shown to the users (see figure 8) so they can decide whether
the prediction is correct or not. An option to confirm and thus insert the
prediction into the current track, e. g., using a keyboard shortcut, can
make the workflow faster. In our implementation, we chose the number
of prediction layers to be three. Here we try to find a balance between
the length of the prediction and the performance. For more details on
the choice of the number of layers and performance, see section 7.2.

Figure 8: After selecting hits, a prediction shows how the track could
be continued. Blue: Selected track. Red: Prediction.

Figure 9: Hiding tracks with an opacity of 0.1. Because of the
surrounding tracks being hidden, other tracks can be isolated and thus
rendered better visible. The black arrow points to a now isolated and
thus better visible path of particles.

6. Workflow

Using the above-mentioned methods usually results in the workflow
described in the following. First, one tracks the outer paths, as they are
normally isolated and can be easily selected. This tracking can be done
quickly using multi-selection such as brush, box, or lasso. After a track is
done, it can be hidden from view to not occlude other paths (see figure 9).
When all the outer paths are done, normally a highly crowded middle
section is left. This middle section can be untangled with the stretching
method. After stretching the data, one can now rotate to visually isolate
a path. For the now isolated path, again one can use multi-selection to
track it. Since it is sometimes not possible to fully isolate a path, wrong
hits might get into the selection. For this, one can use the option to
deselect hits or the undo and redo options. Both are provided by our
implementation. Especially in these crowded areas, the prediction can
be a good help with highlighting the path and showing the related hits.

As can be seen in the video accompanying this paper, providing
keyboard shortcuts for actions, such as scaling the data and inserting
the prediction into the current track, saves the user a lot of time. In
general, every action that leads to the user needing to click outside of
the viewer is also available as a shortcut. Since the users will be using
their mouse or digital pen while tracking, all shortcuts are accessible
with one hand. Because the methods have their limitations, that will be
discussed in section 7.3, there also is an option to enable and disable
them individually. Also, parameters for the methods are helpful if the
user can edit their values. Such parameters can be the maximum angle
for the adaptive visibility or the opacity of the hidden hits. A good value
for the opacity is between 0.0 and 0.1. One either does not want to see the
hidden hits at all, or one wants to see them slightly to not miss a hit. The
scaling factor of the stretching method can also be seen as a parameter,
but it normally is not changed before the tracking. It is normally changed
interactively while tracking with immediate visual feedback.
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7. Results

The results of applying the methods described in this paper are better
demonstrated interactively than explained through words or images.
Thus, a video, showing the different methods in action, accompanies
this paper. It starts with a comparison of the multi-selection types and the
prediction. First only on free tracks, tracks that can be seen unobstructed,
and then also on occluded tracks, tracks that are obstructed by other
tracks. For a better comparison, it also shows the tracking with single
clicks, i. e., without any support by our method. In the video, it is ap-
parent that single clicks are by far the slowest and most tedious method.
When tracking an occluded track, it is highly recommended using the
adaptive visibility when tracking with single clicks. Else, it is almost
impossible to see the right path. The brush selection is by far faster, but
the user still has to brush almost directly over the hits. Brushing has the
added benefit of being intuitive when using a graphics tablet. But this still
requires more precise work than the other selection methods. Especially
for occluded tracks, the stretching can help the user to not accidentally
brush over the wrong hits. It helps to isolate previously occluded tracks,
so the user can see them better. Box and lasso on the other hand do not
differ much. If users find at least two hits of the same path, they can
select them and after that roughly select the rest of the path. The straight-
est path algorithm should calculate the right track in most cases. The
result of using all methods for a whole data set can be seen in figure 10.

The prediction in itself is not useful when tracking a free (non-
occluded) track. Such a track is already visible, so multi-selection would
be faster than letting the algorithm figure out a prediction. For the oc-
cluded tracks, it gives the user an easy way to build the track step by step.

All methods have been presented to the Bergen pCT Collaboration
on multiple occasions and were met with great appreciation. Many of
the methods have been refined through the feedback of our collaboration
partners. Additionally the predicition mechanism was inspired by one
of the domain scientists.

7.1. Accuracy of SAPT

In addition to the attached video, we also manually tracked 20 data sets
of 100 simulated particles each. If a track in the manual data set is equal
to a track in the simulated data, it is considered correct. Comparing every
track then creates the accuracy of this manual data set. The average accu-
racy of all the 20 data sets in this experiment amounts to around 98.77%
While we calculated the accuracy of the data sets, we also tracked the
time it took to reconstruct the trajectories manually. Tracking 100 sim-
ulated particles takes about 17 minutes on average. Since the goal for
SAPT is to help ground truth data out of the real detector data, an accu-
racy close to 100% is needed. Due to SAPT’s accuracy, there is about
one wrongly tracked trajectory per data set. This error rate is acceptable
for creating ground truth data. From the evaluation of the current algo-
rithm for automatic reconstruction by the Bergen pCT Collaboration, we
know that the efficiency of tracking 100 simulated particles amounts to
about 77% [PMO∗20]. This results in about 20 wrongly reconstructed
trajectories per data set. Therefore, SAPT’s methods reach an accuracy
of approximately 1.3 times the accuracy of the algorithmic solution.

As the read-out rate of the detector is not yet determined, we also
tested the SAPT methods with a 1000 particles and a 10,000 particles
read-out. Here, we tracked the innermost 100 particles, as this is
sufficient to test whether manual tracking at this density is possible.

While the data set with a 1000 particle read-out can be tracked, the
time increases to 30–40 minutes and the accuracy decreases to about
96%. This is still an acceptable result for creating ground truth data.
The data set containing the 10,000 particle read-out rate could not be
reconstructed in our experiment. While one or two tracks could be
isolated through stretching the data, most of the particles are too close to
each other to distinguish individual trajectories. More details regarding
the described evaluation can be found in [Esc22].

7.2. Performance of Prediction

As mentioned in section 5.5 we chose the prediction mechanism to
work on three layers to reach acceptable performance. This choice
is based on experiments we performed. We calculated the minimum,
maximum, and average execution time of the prediction for one of
our data sets (see figure 11). For the calculation, we took every hit
in our data of 100 simulated particles and calculated the prediction
for 1–8 prediction layers separately. We also evaluated the use of the
adaptive visibility as a pre-filter. This was done automatically, as was
the tracking of the execution time. Therefore, we base our statistics on
the data for around 200 values per layer.

The minimum execution time is negligible, as it is about the same
short time for any number of layers. However, it should be noted, using
the prediction without the adaptive visibility results in a better best case
time due to fewer comparisons and calculations. Due to the worst case
and average time, we made the adaptive visibility mandatory for the use
of the prediction and chose the number of prediction layers to be three
by default. This ensures a calculation time less than a tenth of a second
in every case, which does not hinder the user when tracking. Long
prediction times would lead users to either not using the prediction or
needing to wait a comparatively long time in which they could have
used multi-selection for the same result.

The performance of the prediction is dependent on the characteristics
of the data set. The more hits are the same layer, especially hits that
are close to each other, the bigger the graph for Dijkstra’s algorithm
gets, and the more paths need to be calculated. If the hits spread over
more layers, the prediction is faster. Although we suggest three layers
for typical data sets, depending on the input data a different number
of prediction layers might be of use.

7.3. Generalization and Limitations

Most presented methods, i. e. adaptive visibility, straightest path and
prediction, rely on a layered structure of the data. This, however, does
not constrains them solely to our pCT data. All of these methods
generalize well to any type of layered point cloud. A specifically
important example of such data is time-based data, where a time step
or time slice would correspont to a layer.

Depending on the input data, limitations of the methods described
in the paper become more or less noticeable. First, if particles typically
take sharp turns and the corresponding hits thus have a high deviation
in angle compared to the preceding layer, neither the prediction nor the
straightest path nor the adaptive visibility methods will give satisfactory
results. In our application case this rarely happens and in the occasion
can be easily recognized by the user.

This is also a limitation in existing tracking methods. E. g., in one
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Figure 10: Result of manually tracking 100 simulated particles creating 87 trajectories. Two views of the same tracking (left: side, right: front) are
shown. The discontinuous color scale has been chosen for illustration purposes only.
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Figure 11: Performance comparison of prediction with/without adaptive
visibility filtering. Data was created using 100 particles using 43 (2 front-
tracker and 41 detector) layers resulting in about 2000 primary hits.

of the algorithms that is also using an angle based method works
with a maximum scattering angle [PMO∗20]. This angle defines the
maximum allowed difference in angle from one hit to another. An
optimal value for this angle has to be found, as too low values result
in the track ending early and too high values result in wrong hits chosen
for the track. That is the benefit of a semi-automatic approach. By
having a user direct and supervise the algorithm, minor errors can be
corrected on the spot or may be avoided from the start.

Since the straightest path and the prediction methods build a graph
over the whole selection, their performance is highly impacted by the
number of hits inside the selection. Especially impactful are multiple
hits on the same layer. The more hits the selection has on one layer, the
more branched the graphs will be. This limitation can be counteracted
by using the adaptive visibility as a pre-filter for the shortest path and
the prediction method. But the bigger the data set and the more crowded
the data, the more this limitation becomes apparent.

8. Conclusions

We presented SAPT, a collection of methods for semi-automatic particle
tracking. The benefits of SAPT when compared to straight-forward man-
ual tracking are apparent. Especially in crowded areas where the tracks
occlude each other tremendously, the adaptive visibility, prediction and
most notably the straightest path method highly simplify and accelerate
the user’s workflow. With the presented methods, the user can be less pre-
cise and thus faster while selecting and still obtain the same precise track.

We plan to extend our methods to include the deposited energy, or
other relevant physical quantities, of the particle. This could lead to
a more precise calculation of the right track among a set of detector
hits. Another possible way to enhance our methods would be to employ
more automatic tracking algorithms, that could be used as the basis for
multi-selection and prediction.

As of fall 2021, an implementation of all SAPT methods is available
free and open source in the OpenWalnut [EHWS10] software at
http://source.openwalnut.org/.
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