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Abstract. In this paper we apply vector field topology methods to a
mathematical model for the fluid dynamics of reaggregation processes in
tissue engineering. The experimental background are dispersed embry-
onic retinal cells, which reaggregate in a rotation culture on a gyratory
shaker, according to defined rotation and culture conditions. Under op-
timal conditions, finally complex 3D spheres result. In order to optimize
high throughput drug testing systems of biological cell and tissue models,
a major aim is to understand the role which the fluid dynamics plays in
this process. To allow for a mathematical analysis, an experimental model
system was set up, using micro-beads instead of spheres within the cul-
ture dish. The qualitative behavior of this artificial model was monitored
in time by using a camera. For this experimental setup a mathematical
model for the bead-fluid dynamics was derived, analyzed and simulated.
The simulations showed that the beads form distinctive clusters in a layer
close to the bottom of the petri dish. To analyze these patterns further,
we perform a topological analysis of the velocity field within this layer
of the fluid. We find that traditional two-dimensional visualization tech-
niques like path lines, streak lines and current time-dependent topology
approaches are not able to answer the posed questions, for example they
do not allow to find the location of clusters. We discuss the problems
of these techniques and develop a new approach that measures the den-
sity of advected particles in the flow to find the moving point of particle
aggregation. Using the density field the path of the moving aggregation
point is extracted.
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1 Introduction

The topology of two-dimensional time-dependent vector fields has been an active
field of research in recent years [7, 18, 17]. In this paper we investigate the features
of a mathematical model for the fluid flow of a mixture of beads and growth
medium in a layer close to the bottom of a petri dish, which rotates on a gyratory
shaker. A moving zero in the instantaneous vector field is the most striking
feature of the flow. This suggests the application of topological methods for the
desired analysis. To provide the basis for the discussion of the vector field we
will first describe the experiment, the mathematical model and its simulation,
which leads to the vector field.

2 The Experiment, the Mathematical Model and its
Simulation

The biological experiment, which builds the background for the mathematical
model, its simulation, visualization and visualization techniques, investigates
rotational tissue cultures, which are relevant for high throughput drug testing
systems in regenerative medicine. A petri dish, which contains growth medium
and dispersed embryonic cells, is located on a gyratory shaker. The specificities
of the rotation affect the fluid flow in the petri dish and thus the motion of
the cells. Without any movement of the petri dish, the cells generally form a
mono-layer at the bottom and grow in a disorganized manner. However, under
a specific rotation of the petri dish, the cells finally form several 3D spheroids.
Details about these methods and further results can be found in [9, 8, 10].

To understand the role the fluid dynamics play in this reaggregation and
structure forming process, an experimental model system was set up. Microscopic
beads were put into the culture dish and rotated under the same conditions as
the cell systems. This system is assumed to serve well as a model system for the
cell-based fluid dynamics under consideration. In the experiment clustering of
the beads was observed for a rotation speed of 70RPM but not for a rotation
speed of 60RPM. Further interesting patterns and phase transitions occurred. To
confirm the hypothesis that mechanical aggregation plays a key role in the initial
clustering of the beads, a mathematical model for the fluid dynamics was derived
and numerically analyzed. The basis of the mathematical model are the incom-
pressible Navier-Stokes Equations, which are solved in a domain representing the
petri dish. Fictitious body forces, acting on the fluid, are added. These result
from the rotation of the petri dish. A dimensional analysis was performed and by
regular perturbation techniques the model was reduced to a shallow water type
of problem. The main assumption is, that the Reynolds number in horizontal
direction is much larger than the Reynolds number in vertical direction. For the
numerical discretization a finite volume method was employed, which takes into
account that the flow is mainly laminar. The qualitative behavior of the mathe-
matical model compares well to the aggregation behavior of the beads observed
in the experiment. Clusters of particles are found to rotate around the center
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of the petri dish. Further details on the mathematical model, its simulation and
first visualizations are given in [3]. The simulations of this model provide the
data, which are analyzed in the following.

To justify our use of two-dimensional visualization techniques it should be
noted that the beads (in the rest of the paper often called the particles) are
expected to stay in a layer close to the bottom of the petri dish. The particles
are only expected to leave this layer at singular points in the flow.

3 Related Work in Vector Field Topology Visualization

As mentioned, topological methods seem to be a good choice for the visualiza-
tion of the presented application. Of particular relevance for the present work
are techniques that permit to track the continuous evolution of the topology as
it evolves over time. Improving on a scheme introduced by Helman and Hes-
selink [7], which graphically reconnects the topological skeletons extracted in
successive time steps, Tricoche et al. [18] proposed a scheme that computes the
continuous path followed by two-dimensional singularities (where the flow ve-
locity vanishes) across the space-time domain. Their approach explicitly charac-
terizes bifurcations, which correspond to critical changes affecting the structure
of the topological skeleton. An alternative method that extracts the topological
evolution by means of numerical integration over the space-time continuum was
introduced by Theisel et al. [16]. Extensions to three-dimensional transient flows
have been presented for both methods [5, 15]. Just recently Wiebel et al. [19] in-
troduced a technique allowing to track singularities on curved surfaces by using
parameterizations in combination with the existing two-dimensional techniques.

A first approach to time-dependent topology not using streamlines, called
path line oriented topology, was undertaken by Theisel et al. [17]. They distin-
guish sectors of attracting, repelling and saddle-like behavior of the path lines.
This is different from the usual concept of topology, which is to observe how
trajectories behave under an integration until infinity while their method only
considers local properties of the path lines. They call this approach topological
because it also aims at segmenting the domain into areas of different flow be-
havior. To be able to apply an asymptotic analysis for path lines Shi et al. [14]
restrict themselves to periodic fields and present a path line oriented topology
for periodic 2D time-dependent vector fields. Unfortunately, this approach is not
applicable in our case as the flow considered in this paper is not periodic.

4 Application of Common Visualization Techniques

In this section we describe the application of a number of standard visualization
techniques to the petri dish flow field. We describe the different viewpoints taken
by these techniques and show their deficiency to illustrate certain features of the
flow. This will promote the need for the new technique developed in Section 5.
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(a) LIC of instanta-
neous vector field for
t = 37. Note the sink
in the right part.

(b) Path line from
outer area.

(c) Path line from
center.

(d) Streak lines
started at
t = 2 shown for
t ∈ {25, 37, 79}.

Fig. 1. Application of different standard visualization techniques for vector fields.

4.1 Streamlines

Streamlines and their dense counterpart the line integral convolution [2] (LIC)
are the most frequently used visualization techniques for flow fields. As they
only illustrate the momentary direction of a flow, animations are often used for
time-dependent fields. For the current application such an animation only shows
the overall rotation behavior and the existence of an attracting singularity in
the flow (see Figure 1(a)). The information about the long-term behavior of
particles given by this visualization is very small. A more detailed discussion of
the attracting singularity will be given in the section about streamline oriented
topology (Section 4.4).

4.2 Path Lines

As path lines reflect the path of a particles they should be better suited for finding
the path of the moving agglomeration. Indeed, the path lines shown in Figures
1(b) and 1(c) (coming from the border respectively the center of the domain)
show that the particles approach a kind of common cyclic structure. A naive
interpretation of this cyclic structure could be that the particles are distributed
around the circle and form a kind of ring. It does not become clear that the
particles tend to agglomerate around one position and that this agglomeration
moves on the displayed circle (see Figures 2(b) and 2(c)).

4.3 Streak Lines

Well known from physical flow experiments, streak lines seem to be a good stan-
dard choice to investigate the two-dimensional flow field. Most images produced
by streak lines seem to yield a good representation of the underlying flow. Good
examples can be found in a paper by Sheard et al. [13] and many other papers
in the same journal as well as in a book by Batchelor [1]. However, it is also
known that care has to be taken with the interpretation of streak lines [6]. Rep-
resentative streak lines for our example are shown in Figure 1(d). The image is
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(a) (b) (c)

Fig. 2. Particles traced in the rotating flow show that the point attracting the particles
is not the singularity moving through the flow. (a) Particles (white) at t = 1. (b) Parti-
cles after advection until t = 37 with attracting singularity (blue) at t = 37. Compare
the position of the singularity to LIC in Figure 1(a). (c) Particles after advection until
t = 40 with attracting singularity at t = 40.

only able to illustrate the fact that the particles come closer to the center of the
dataset with longer advection time. An animation over a certain time interval
shows the general rotation but does not reveal any salient features either.

4.4 Streamline Oriented Topology

The best candidates for showing the aggregation of the particles seem to be
topological methods as they can track the path of attracting singularities (also
known as sinks) through time. Naively, one would expect that the particles at
a certain point of time tend to agglomerate at the momentary position of the
sinks. In our example we have exactly one such sink and thus would expect the
particles to converge to this point.

To inspect these presumptions we traced the particles shown in Figure 2(a) a
certain amount of time t and computed the singularity of the instantaneous vec-
tor field at time t. Figures 2(b) and 2(c) show the resulting images. The images
clearly contradict the presumptions. The particle agglomeration is not located
around the singularity, it rather lags approximately one third of a rotation pe-
riod behind the zero of the vector field. A possible explanation for the difference
between the point of aggregation and the singularity might be that the singular-
ity lies in a large area with nearly zero vectors. Thus the concentration process
can not (or only very slowly) appear there. It is probably much stronger in areas
with vectors of large magnitude. Additionally, even a significantly moving and
strongly attracting singularity would not be able to drag the agglomeration along
its path because vectors on opposite sides of the singularity point in opposite
directions. The particles thus are moved in one direction before the singularity
passes (close to) their position and in the opposite direction thereafter.

As our example shows, there are probably only few cases for which a singu-
larity in time-dependent flow has an interesting meaning. One of these few cases
is a singularity on a surface that indicates separation of the flow from the surface
(see e.g. [19]).
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4.5 Path Line Oriented Topology

(a) Path line oriented topology in complete
time-dependent field. Third dimension used to
stack time steps (60 < t < 80 visible). Isosur-
face encloses attracting behavior.

(b) Path line oriented topology (left)
compared to divergence (right) for t =
70. Colormap and zero isolines divide
the field into areas with converging
(negative values) and diverging be-
havior (positive values)

Fig. 3. Path line oriented topology.

As discussed in Section 4.2, path lines are more effective for illustrating the
time-dependent nature of the flow than streamlines. Thus it is worth looking at
the visualization yielded by the so-called path line oriented topology as intro-
duced by Theisel et al. [17]. Although, this approach does not really compute
path lines and analyze their behavior it still classifies the local time-dependent
behavior as saddle-like, attracting (converging) or repelling (diverging).

The application of path line oriented topology to our data reveals no areas
of saddle-like behavior. The domain is only divided into attracting and repelling
parts. Figure 3(a) shows the attracting parts enclosed by an isosurface. It is
apparent that not only specific points are marked as attracting but large areas.
Thus, the approach does not identify the features we are searching for, i.e. points
of particle attraction. It only illustrates that the attracting and repelling parts
revolve around the center of the dish over time.

Figure 3(b) shows a comparison of one of the characteristic fields of the
path line oriented topology (here sum of eigenvalues) and the divergence of
the instantaneous vector field. Both images illustrate the behavior at t = 70.
The comparison makes a strong statement about the meaning of the path line
oriented topology for our data. It seems that the areas marked as attracting or
repelling closely correspond to areas of negative or positive divergence. This is
interesting because the computation of path line oriented topology is much more
time consuming than the computation of divergence.

4.6 FTLE

As we are searching for converging particles, one might suggest to use FTLE
(Finite-Time Lyapunov Exponent) fields for visualization (see e.g. [4, 11]). Our
experiments, however, showed that while FTLE is able to characterize the time-
dependent convergence better than path line oriented topology does, it does not
identify the point of attraction either. Figure 4 shows a color mapping of FTLE−
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Fig. 4. FTLE− with particle cluster for t = 70. Integration for 1 (left) and 20 time
units (right). Very high magnitude of FTLE− marked yellow. Note the small (enlarged)
yellow point fairly close to the particles.

(i.e. FTLE using backward integration) for t = 70 together with a particle cluster
at the same instant. The left image results from a very short integration and does
not help us, as the FTLE is dominated by interpolation artifacts resulting from
the coarse grid. This influence vanishes for longer integration times (right image).
But even in this image the center of the particles can not be determined correctly
as strong FTLE− can be found in a large area around the particles. Taking the
maximum does not help as there are several very large values (marked yellow),
none of which represents the center correctly. The relatively “noisy” FTLE field
(right image) results from the fact that many particles leave the domain during
long-time backward integration.

5 Detection of Point of Attraction

In the previous section we have shown that popular existing visualization tech-
niques for unsteady two-dimensional flow fields, while being able to give hints as
to where particles converge, are not capable of finding the point of aggregation
of the particles. In the rest of the current section we will describe a new approach
specially designed to find and track the point of particle aggregation.

5.1 Idea

The basis for the presented technique is the following observation: Particles
started at earlier times, in general, can be found in the convex hull of particles
started at later time steps (see Figure 5(b)). This means that the point of the
largest particle density is the point that is attracting particles. So the main
procedure of the proposed technique is the following: We trace particles from a
grid at a number of time steps before the observation time. We then compute
the density of the particles and extract maxima of this density. The maxima
show us the positions of the points of particle attraction. As these points move
over time we repeat the procedure for several observation times. Connecting the
points of the different observation times yields the path of a point of attraction.
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(a) (b)

Fig. 5. Particle advection for density computation. (a) Regular grid for starting parti-
cles. (b) Particles started at earlier time steps lie in convex hull of particles from later
times (except points started and remaining exactly on the boundary). Points color
coded by starting time.

5.2 Seeding of Particles

The first step of the technique is seeding the particles for the advection. Care has
to be taken because the initial distribution influences the density of the particles
after advection. As can be seen from the initial particle positions in Figure 2(a),
the grid of the simulation is a structured radial grid. Particles seeded on this grid
have a non-uniform density, i.e. a higher density near the center. Figure 2(b)
shows that the non-uniformity of the initial distribution is still visible after
particle advection. This can cause the existence of density maxima (resulting
from initially high density) at points where advection has not increased density.
This, again, can make finding the correct point of attraction impossible.

Consequently, we need a uniform density at the beginning. A simple distri-
bution fulfilling this constraint can be obtained by seeding the particles at the
points of regular grid as shown in Figure 5(a). For starting particles at different
time steps we choose the seeding grids to be equidistant in time.

5.3 Density Computation

We store the density on a second regular grid. It may have a different resolution
than the one used for seeding the particles. For every point of the density grid we
simply count the particles that are closer to this point than to any other. This
is equivalent to counting the particles in all cells of the dual of the density grid.
Since the grid is regular, each cell of the dual grid is defined by two intervals on
the two coordinate axes. Knowing the resolution and the bounding box of the
grid, it is easy to compute the intervals and thus the grid position each particle
position belongs to. We increment the particle count of the density grid position
we have found a particle to be closest to and repeat this for all particles and
starting times to obtain the desired density field. Examples of density fields for
our data set are shown in Figure 6.
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(a) Density of particles traced from one
grid at t = 50.

(b) Density of particles traced from ten
grids at t = 50, 52, . . . , 68.

Fig. 6. Color coded density distribution for time t = 70 and resolution of 100 × 100.
The length and with of the square are two times the radius of the petri dish.

5.4 Extraction of Density Maxima

The density field computed in the previous step is given on the points of the
density grid. Usually one introduces a certain interpolation scheme to have con-
tinuous data over the whole domain. If the underlying grid consists of simplices,
i.e. triangles in the two-dimensional case, one often uses a linear interpolation.
Inside quadrangular cells bilinear interpolation is commonly used. For both in-
terpolation schemes maxima and minima can only exist at vertices. Thus, their
detection is straight forward. Using the connectivity induced by the grid we sim-
ply compare the value at each vertex with all directly adjacent vertices. If all
adjacent vertices have smaller values than the considered vertex a maximum has
been found. If only the global maximum is of interest we simply run through
all positions and store the position of the largest value. In order to eliminate
insignificant maxima and merge very close maxima, a low pass filter can be ap-
plied. This was not necessary for the presented data set. The only significant
maximum in the petri dish flow at t = 70 is clearly visible in Figure 6.

5.5 Tracking of Density Maxima

So far only the positions of the maxima in the different time steps have been de-
termined. These are the positions of the point of attraction at different times. To
extract the complete path of the moving point we have to connect the positions
of corresponding maxima between the time steps. In our case, where we have
only one important maximum, we simply connect the positions by straight lines.
Images of the tracked maximum are shown in Figure 7. As the maxima can only
appear at vertices of the grid underlying the density field, the smoothness of
extracted paths strongly depends on the resolution of this grid. A second influ-
encing factor is the distance of the density fields in time. This is why the paths
in the figure are relatively jaggy. The paths in Figure 7 cover only relatively
short time spans to avoid visual clutter by crossing and overlapping.
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(a) Attraction path consisting of 50 ob-
servations with density field resolution
100×100 and seeding resolution 30×30

(b) Attraction path consisting of 30 ob-
servations with density field resolution
40× 40 and seeding resolution 10× 10.

Fig. 7. Attraction path for 72 < t < 80 extracted by tracing from t− 20. Smoothness
of path depends on resolution of density field and number of observations. Different
colored particles for different observation times t (traced from t− 15) provide context.

Multiple Maxima As mentioned, we connect the single maximum in our data
from one time step to the next. When aiming at tracking several maxima in one
density field over time, more elaborate techniques are needed. Several methods
for tracking features in scalar fields can be found in the literature, see e.g. [12].

5.6 Performance, Discussion and Acceleration

The computation times for the paths strongly depend on the resolution of the
seeding grid, the number of observations and the number of grids used to seed
the particles for each observation. In Figure 7 they range from 4 minutes for the
path in Figure 7(b) to one hour for the path in Figure 7(a).

Increasing the resolution of the density grid increases the computation time
only marginally. This is why we chose the density resolution to be different from
the seeding resolution. It allows us to increase the precision of the detected
maximum position at nearly no cost. However, it is important to note that the
density resolution can not be chosen completely independent from the seeding
resolution. If the resolution difference becomes to large, the number of particles
becomes insufficient to produce a reasonable density field. The result are many
positions with one or two particles closest to them and no position being a
significant maximum. This renders the extracted paths meaningless. We found
density resolutions below 5 times the seeding resolution to yield good results.

The large number of particle advections is the dominating factor of the com-
putation time. There is a large potential for acceleration. The most obvious
acceleration is parallelizing the particle advection. This yields a computation
time nearly inverse proportional to the number of tasks processable in parallel.

A second idea, more specific to the presented approach, is to reuse previously
traced particles. This idea is applicable if we do not only compute the position
for a single time but perform a tracking of the position through a number of time
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steps. Let ta0 < ta1 < . . . < tan be equidistant times for which particles have been
traced until ta = tan. Define tb0 < tb1 < . . . < tbn analogously. Let ta < tb. If we now
store all positions of all particles traced for ta in groups depending on their start
time tai we can reuse the particles of all but one group (ta0) for computing the
positions of the particles for tbi . Let the distance between two times be ∆t. Then
the positions of the particles starting at tb0, . . . , t

b
n−1 and being observed at tb can

be computed by tracing the particles of the groups ta1 , . . . , t
a
n for ∆t. Obviously,

this saves a large amount of computation time, as nearly all particles1 observed
at tb need only to be traced for the relatively short time span ∆t. Without
this acceleration the mean time span traced is n∆t

2 . Thus, reusing the previous
particle positions we achieve an acceleration by a factor of approximately n

2 .

6 Conclusion

We have discussed the application of several visualization techniques that are
commonly used to illustrate two-dimensional time-dependent flow at a biofluid
dynamic model. It turned out that all these existing techniques are not able to
show the desired information or features of the vector field, i.e. the location of
the point where particles tend to aggregate. Hence, a new technique computing
the density of particles started at regularly distributed points at regularly spaced
time steps is introduced. The density field obtained with this technique is then
used to compute the desired location for any time step of interest. Thus, a
curve representing the moving particle aggregation center can be defined. It is
important to note that this curve is different from the path of the zero in the
instantaneous velocity field.

We plan to improve our acceleration techniques to be able to extend our
method to unsteady 3D vector fields where the computation time becomes even
more crucial. Furthermore, we recommend the usage of our method only if the
existence of an interesting point of aggregation is known, as otherwise a large
number of false positives might corrupt the visualization. A method for detecting
the existence of points of aggregation is needed.
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